Abstract-Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s
À1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s À1 ) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.