2024
DOI: 10.3233/jcm-247241
|View full text |Cite
|
Sign up to set email alerts
|

Small-target smoking detection algorithm based on improved YOLOv5

Hong Yan,
Zhanbo Jiang,
Zeshan Han
et al.

Abstract: The use of general target detection algorithms for small-target detection is computationally costly and has a high missed detection rate. A lightweight small-target detection model based on YOLOv5 is proposed to address this issue.First, a maximum pooling layer is introduced to reduce the number of calculations. Second, Shuffle_Conv is designed to replace the ordinary convolutional layer to reduce model parameters. To further compress the model, the Add fusion method is used in the C3 module, while the GAC3 la… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?