2019
DOI: 10.1109/access.2019.2902939
|View full text |Cite
|
Sign up to set email alerts
|

SMA Based Elbow Exoskeleton for Rehabilitation Therapy and Patient Evaluation

Abstract: A large number of musculoskeletal and neurological disorders can affect the upper limb limiting the subject's ability to perform activities of daily living. In recent years, rehabilitation therapies based on robotics have been proposed as complement to the work of therapists. This paper introduces a prototype of exoskeleton for the evaluation and rehabilitation therapy of the elbow joint in flexion extension and pronation-supination. The main novelty is the use of bioinspired actuators based on shape memory al… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
39
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 38 publications
(42 citation statements)
references
References 25 publications
0
39
0
1
Order By: Relevance
“…De esta manera (Serrano et al, 2018) diseñaron un exoesqueleto de muñeca portátil de rehabilitación para la articulación de la muñeca con dos grados de libertad (DOF), flexión-extensión y aducción-abducción, accionado con actuadores basados en aleación de memoria de forma (SMA). Implementando nuevamente el actuador flexible, (Copaci et al, 2019) diseñaron un exoesqueleto de codo portátil para terapia de rehabilitación y evaluación de pacientes. El exoesqueleto no usa componentes rígidos para el movimiento de la articulación, y utiliza un centro de rotación para ubicar la articulación del codo de cada paciente.…”
Section: Aplicaciones De Las Smas En La Biomedicinaunclassified
“…De esta manera (Serrano et al, 2018) diseñaron un exoesqueleto de muñeca portátil de rehabilitación para la articulación de la muñeca con dos grados de libertad (DOF), flexión-extensión y aducción-abducción, accionado con actuadores basados en aleación de memoria de forma (SMA). Implementando nuevamente el actuador flexible, (Copaci et al, 2019) diseñaron un exoesqueleto de codo portátil para terapia de rehabilitación y evaluación de pacientes. El exoesqueleto no usa componentes rígidos para el movimiento de la articulación, y utiliza un centro de rotación para ubicar la articulación del codo de cada paciente.…”
Section: Aplicaciones De Las Smas En La Biomedicinaunclassified
“…Depending on the application, a high operating temperature can be a drawback. For example, SMA-based actuators have been used for robotic rehabilitation devices [25,26]; in these cases, a high temperature can cause incompatibilities. Between the candidate wires for the actuator are analyzed the wires with the activation temperature in 90 • C (high temperature), alloys NiTi from Dynalloy Inc. Company [27], and wires with activation in 70-75 • C (low temperature), alloys of NiTiCu from SAES Getters [28].…”
Section: Actuator With 90 • C Activation Vs Actuator With 70 • C Actmentioning
confidence: 99%
“…The disadvantage of this configuration can be observed in the cooling stage, where the heat dissipation is more slowly compared with the second configuration, which affect the actuator work frequency. This property has been analyzed in [25], and can be observed in Figure 10 where the Energy2D software [24] has been used to perform a thermal simulation of SMA actuator. The simulation was configured according to the SMA actuator parameters defining the dimensions, temperature coefficient, temperature of activation (reference temperature), thermal conductivity, specific heat, and density.…”
Section: Multiple Sma Wires Actuatormentioning
confidence: 99%
“…Hitting control term (14) Here, W = diag(w 11 , w 22 ) ∈ R 2 denotes a positive diagonal gain matrix.sat(s) represents a saturation function with a dead-zone compensation expressed as follow…”
Section: A Controller Designmentioning
confidence: 99%
“…where ϕ denotes a positive constant defining the boundary layer thickness of the saturation function; ρ represents the constant dead-zone compensation value; sign (•) denotes the sign function. Inserting (11) and the improved control law (14) into (6), we can obtain…”
Section: A Controller Designmentioning
confidence: 99%