Eating is dangerous. While food contains nutrients and calories that animals need to produce heat and energy, it may also contain harmful parasites, bacteria, or chemicals. To guide food selection, the senses of taste and smell have evolved to alert us to the bitter taste of poisons and the sour taste and off-putting smell of spoiled foods. These sensory systems help people and animals to eat defensively, and they provide the brake that helps them avoid ingesting foods that are harmful. But choices about which foods to eat are motivated by more than avoiding the bad; they are also motivated by seeking the good, such as fat and sugar. However, just as not everyone is equally capable of sensing toxins in food, not everyone is equally enthusiastic about consuming high-fat, high-sugar foods. Genetic studies in humans and experimental animals strongly suggest that the liking of sugar and fat is influenced by genotype; likewise, the abilities to detect bitterness and the malodors of rotting food are highly variable among individuals. Understanding the exact genes and genetic differences that affect food intake may provide important clues in obesity treatment by allowing caregivers to tailor dietary recommendations to the chemosensory landscape of each person.