The platform will undergo maintenance on Sep 14 at about 7:45 AM EST and will be unavailable for approximately 2 hours.
2016
DOI: 10.1088/1612-2011/13/7/075104
|View full text |Cite
|
Sign up to set email alerts
|

Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG

Abstract: Single-frequency operation of a 1.03 μm fiber laser with random distributed feedback (RDFB) is demonstrated. The laser cavity is based on a 4 cm long fiber Bragg grating (FBG) consisting of 10 homogeneous subgratings with random phase and amplitude of refractive index modulation inscribed in a polarization maintaining (PM) Yb-doped fiber. Such RDFB laser generates single longitudinal mode with output power up to 25 mW, which is 3.5 times higher than that for a DFB laser based on regular π-shifted FBG of the sa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
9
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 24 publications
(11 citation statements)
references
References 20 publications
(26 reference statements)
0
9
0
2
Order By: Relevance
“…Since standard optical fibers provide extremely weak reflection due to Rayleigh backscattering, distributed feedback may be enhanced by introducing artificial point-like or continuous reflectors in the fiber core, which can significantly reduce the length of RDFB laser cavity. A fiber Bragg grating (FBG) with random variation in period and amplitude (coupling coefficient) along the optical axis [3,10,11], an array of FBGs with random intervals and reflection coefficients [12,13], and point reflectors forming Fabry-Perot interferometers [14] could be used as such randomized reflector. In general, in these lasers both multi-and single-frequency generation regimes are observed depending on the resonator length, pump power, and the type of random structure providing distributed feedback.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Since standard optical fibers provide extremely weak reflection due to Rayleigh backscattering, distributed feedback may be enhanced by introducing artificial point-like or continuous reflectors in the fiber core, which can significantly reduce the length of RDFB laser cavity. A fiber Bragg grating (FBG) with random variation in period and amplitude (coupling coefficient) along the optical axis [3,10,11], an array of FBGs with random intervals and reflection coefficients [12,13], and point reflectors forming Fabry-Perot interferometers [14] could be used as such randomized reflector. In general, in these lasers both multi-and single-frequency generation regimes are observed depending on the resonator length, pump power, and the type of random structure providing distributed feedback.…”
Section: Introductionmentioning
confidence: 99%
“…Depending on the length and the pump power, the random lasers exhibited both multi-and single-frequency operation near 1534 nm with the linewidth reduced to <0.5 pm. In [11], a 41-mm FBG consisting of 10 segments of equal length, each with a randomly varying coupling coefficient and a random phase shift relative to the previous segment, was used as a cavity of a 1030-nm Ybdoped fiber laser. Compared to a regular DFB laser based on an FBG containing a single π phase shift in the central region, the laser exhibited 3.5-5 times higher efficiency at a comparable generation linewidth of <100 kHz.…”
mentioning
confidence: 99%
“…One of the examples of random fiber lasers was realized with RDFB via Rayleigh scattering on the refractive index fluctuations of the medium, and light amplification due to the effect of stimulated Raman scattering (SRS) in a passive optical fiber [4]. Random lasing in active fibers is possible either with the use of FBG with multiple random phase shifts (in Er-doped fiber [5]), or an FBG with both randomly varying phase and amplitude (in Yb-doped fiber [6]). In addition to FBGs, RDFB fiber lasers employ distributed reflectors based on refractive-index modification of arbitrary shape inscribed by means of a localized exposure of fiber to a CO2 laser radiation [7] or by a direct writing technique with the use of femtosecond laser [8].…”
Section: Introductionmentioning
confidence: 99%
“…Первый тип возникает в световоде из-за рэлеевского рассеяния на естественных флуктуациях показателя преломления и широко используется при создании ВКР-лазеров, при этом длина лазера составляет километры [1,2]. Второй тип СРОС реализуется за счет искусственных модуляций показателя преломления, таких как волоконная брэгговская решетка (ВБР) со случайными фазовыми сдвигами или массив ВБР, записанных через интервалы случайной длины [3][4][5][6]. Данный тип СРОС используется как в активных лазерах [3][4][5], так и в ВКР-лазерах [6], при этом применение случайных решеток позволяет значительно уменьшить длину резонатора и получить узкополосную генерацию вплоть до одночастотного режима.…”
Section: Introductionunclassified
“…Второй тип СРОС реализуется за счет искусственных модуляций показателя преломления, таких как волоконная брэгговская решетка (ВБР) со случайными фазовыми сдвигами или массив ВБР, записанных через интервалы случайной длины [3][4][5][6]. Данный тип СРОС используется как в активных лазерах [3][4][5], так и в ВКР-лазерах [6], при этом применение случайных решеток позволяет значительно уменьшить длину резонатора и получить узкополосную генерацию вплоть до одночастотного режима. Первая реализация СРОС ВКР-лазера, генерирующего в области 1,5 мкм, со случайной ВБР длиной 1 м, содержащей 1500 фазовых сдвигов [6], продемонстрировала возможность получения узкополосного излучения вблизи порога генерации (с шириной линии 430 кГц), но максимальная мощность (15 мВт) и эффективность (0,8 %) такого лазера были очень низкими.…”
Section: Introductionunclassified