The spindle cells of Kaposi sarcoma (KS) lesions primarily express Kaposi sarcoma herpesvirus (KSHV) latent genes with minimal expression of lytic genes. However, recent transcriptome analyses of KS lesions have shown high expression of KSHV open reading frame (ORF) 75, which is considered a late lytic gene based on analyses in primary effusion lymphoma (PEL) lines. ORF75 encodes a pseudo-amidotransferase that is part of the viral tegument, acts as a suppressor of innate immunity, and is essential for viral lytic replication. We assessed a representative KS lesion by RNAscope and found that ORF75 RNA was expressed in the majority of latency-associated nuclear antigen (LANA)-expressing cells. Luciferase fusion reporter constructs of the ORF75 promoter were analyzed for factors potentially driving its expression in KS. The ORF75 promoter construct showed high basal transcriptional activity in vitro in endothelial cells, mediated by a proximal consensus specificity protein 1 (Sp1) (GGGGCGGGGC) element along with two distal CCAAT boxes. Sp proteins formed complexes with the proximal consensus Sp1 element to activate ORF75 promoter transcription. We also found evidence that a repressive factor or factors in B cells, but not endothelial or epithelial cells, interacted with more distal elements in the ORF75 promoter region to repress constitutive ORF75 expression in B cells. Alternate forms of Sp1 were found to accumulate during latency and showed substantial enrichment during viral lytic replication in PEL cells and infected endothelial cells, but their functional significance is unclear. We also found that ORF75 can in turn upregulate its own expression and that of other KSHV genes. Thus, while ORF75 acts primarily as a lytic gene in PEL cell lines, Sp proteins induce substantial constitutive ORF75 transcription in infected endothelial cells and this can account for its high expression in KS lesions.