2013
DOI: 10.1016/j.jmapro.2012.12.004
|View full text |Cite
|
Sign up to set email alerts
|

Simulation of flow field and steel/slag interface in the mold region of a thin slab steel continuous caster with tetra-furcated nozzle

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
8
0
2

Year Published

2013
2013
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(10 citation statements)
references
References 14 publications
0
8
0
2
Order By: Relevance
“…According to results in this paper and previous work 19 , strongly recommend that the immersion depth not exceed from 40 cm and should be set in range of 30 to 40 cm. In order to avoid from surface turbulence, when the immersion depth is 30 cm, the casting velocity should be not exceed from 4.5 m/min and when the immersion depth is 40 cm also the maximum of casiting velocity set into 5.5 m/ min in order to avoid from surface solidification.…”
mentioning
confidence: 76%
See 1 more Smart Citation
“…According to results in this paper and previous work 19 , strongly recommend that the immersion depth not exceed from 40 cm and should be set in range of 30 to 40 cm. In order to avoid from surface turbulence, when the immersion depth is 30 cm, the casting velocity should be not exceed from 4.5 m/min and when the immersion depth is 40 cm also the maximum of casiting velocity set into 5.5 m/ min in order to avoid from surface solidification.…”
mentioning
confidence: 76%
“…Fig.10 shows three dimensional flow field for the casting when the casting speed was 3.5 m/min and submergence depth was 30 cm, indicating some similarities like four flow recirculation zones with the water model 19 . It should be noted that base on the simulation results about 14-17% of the input melting to nozzle goes out from the upper ports, preventing solidification of the steel on the Top surface especially at the peripheral parts of the nozzle and moving part of the impurities to the free surface.…”
Section: Mold Wallsmentioning
confidence: 90%
“…The thin slab casting process is an example of the technological improvements in steel production; nevertheless, due to its high casting velocities and the small slab thickness, the liquid steel inside produces complex turbulent phenomena adversely affecting the final product quality. On this line, many researchers have focused their efforts on studying these turbulent phenomena, searching for a deeper understanding of how to control or eradicate them [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19]. Some of the most commonly observed phenomena are asymmetries and oscillations of the flow patterns inside the mold, identified through mathematical simulations [2,4,5,7,10,11,[14][15][16][17][18][19] or by physical modeling [6,[9][10][11][12][13][15][16][17], formation of strong recirculation at each SEN side [7][8][9][10][11]…”
Section: Introductionmentioning
confidence: 99%
“…Zare [3] utilizou computação tridimensional da região de interface metal/escória, por meio do método VOF (Volume of Fluid) em conjunção com modelo k-є de turbulência, e comparou os resultados com aqueles de um modelo físico, Figura 3a. Similarmente, Barral [4] obteve o perfil da interface água/óleo na modelagem física e matemática, identificando que, nas regiões onde a pressão obtida da modelagem matemática foi maior, a espessura da película de óleo obtida via modelagem física foi menor, demonstrando claramente o efeito do fluxo na movimentação do óleo, Figura 3b.…”
unclassified
“…Similarmente, Barral [4] obteve o perfil da interface água/óleo na modelagem física e matemática, identificando que, nas regiões onde a pressão obtida da modelagem matemática foi maior, a espessura da película de óleo obtida via modelagem física foi menor, demonstrando claramente o efeito do fluxo na movimentação do óleo, Figura 3b. [3]; b). Comparação do perfil de interface água e óleo na modelagem física e matemática [4].…”
unclassified