2020
DOI: 10.4236/jmmce.2020.84017
|View full text |Cite
|
Sign up to set email alerts
|

Simulation and Techno-Economic Performance of a Novel Charge Calculation and Melt Optimization Planning Model for Steel Making

Abstract: Process algorithm, numerical model and techno-economic assessment of charge calculation and furnace bath optimization for target alloy for induction furnace-based steelmaking is presented in this study. The developed algorithm combines the make-to-order (MTO) and charge optimization planning (COP) of the steel melting shop in the production of target steel composition. Using a system-level approach, the unit operations involved in the melting process were analyzed with the purpose of initial charge calculation… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 8 publications
0
1
0
Order By: Relevance
“…The implication of this relationship between melt composition (elemental and mass constituents) and melting time is that the more time spent in balancing the material composition of an existing charge to achieve target melt, the more energy is consumed in a real-time foundry operation. Having established this relationship from this study, foundry shops will be able to do more in reducing their melting time from material balancing and charge preparations which could be from virtual simulation engines such CastMELT [20] used in this study or others such as (NovaCast, OPTI Melt, Cloud Foundry, and MKW). These simulation programs are foundry melting support tool to assist foundry and production engineers to plan their melting campaign ahead for material charge and optimization.…”
Section: Relationship Between Energy Consumption and Materials Chargementioning
confidence: 93%
“…The implication of this relationship between melt composition (elemental and mass constituents) and melting time is that the more time spent in balancing the material composition of an existing charge to achieve target melt, the more energy is consumed in a real-time foundry operation. Having established this relationship from this study, foundry shops will be able to do more in reducing their melting time from material balancing and charge preparations which could be from virtual simulation engines such CastMELT [20] used in this study or others such as (NovaCast, OPTI Melt, Cloud Foundry, and MKW). These simulation programs are foundry melting support tool to assist foundry and production engineers to plan their melting campaign ahead for material charge and optimization.…”
Section: Relationship Between Energy Consumption and Materials Chargementioning
confidence: 93%