Aim
Balanced crop nutrition is key to improve nutrient use efficiency and reduce environmental impact of farming systems. We developed and tested a dynamic model to predict the uptake of P and K in long-term experiments to better understand how changes in soil nutrient pools affect nutrient availability in crop rotations.
Methods
Our RC-KP model includes labile and stable pools for P and K, with separate labile pools for placed P and organic fertilizers including farm yard manure (FYM). Pool sizes and crop-specific relative uptake rates determined potential uptake. Actual crop uptake from labile pools was based on concepts developed by Janssen et al. (Geoderma 46:299-318, 1990). The model was calibrated on three long-term experiments from Kenia (Siaya), Germany (Hanninghof) and the United Kingdom (Broadbalk) to estimate parameter values for crop-specific relative uptake rates and site-specific relative transfer rates.
Results
The model described N, P and K uptake accurately with a Nash-Sutcliff modelling efficiency of 0.6–0.9 and root mean squared errors of 2.6–3.4 kg P ha−1 and 14–20 kg K ha−1. Excluding organic labile pools did not affect model accuracy in Broadbalk in contrast to Hanninghof where Mg deficiencies affected crop uptakes in treatments without Mg or FYM.
Conclusions
This relatively simple model provides a novel approach to accurately estimate N, P and K uptake and explore short- and long-term effects of fertilizers in crop rotations. Interactions between limiting nutrients affecting actual nutrient uptake were captured well, providing new options to include N, P and K limitations in crop growth models.