2006
DOI: 10.1016/j.anucene.2006.08.009
|View full text |Cite
|
Sign up to set email alerts
|

Simplified distributed parameters BWR dynamic model for transient and stability analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0
1

Year Published

2010
2010
2022
2022

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 7 publications
0
3
0
1
Order By: Relevance
“…Datos geométricos de una barra de combustible típica de un ensamble de combustible de 10x10 (López & Marco A. Lucatero, 2011) Material de la pastilla: Dióxido de Uranio (UO2) Tabla 2. Correlaciones para propiedades termofísicas de los materiales que integran la barra de combustible (Espinosa-Paredes, Núñez-Carrera, & Vázquez-Rodríguez, 2006) Conductividad térmica combustible Capacidad calorífica volumétrica combustible…”
Section: Introductionunclassified
“…Datos geométricos de una barra de combustible típica de un ensamble de combustible de 10x10 (López & Marco A. Lucatero, 2011) Material de la pastilla: Dióxido de Uranio (UO2) Tabla 2. Correlaciones para propiedades termofísicas de los materiales que integran la barra de combustible (Espinosa-Paredes, Núñez-Carrera, & Vázquez-Rodríguez, 2006) Conductividad térmica combustible Capacidad calorífica volumétrica combustible…”
Section: Introductionunclassified
“…This dependence has been intensively studied for prolonged lifetime of existing reactors. There are many papers in which the authors studied the different aspects of this problem [2][3][4][5][6][7]. Yapici et al [2] investigated the maximum temperatures in centerline of the fuel rod for different clad outer surface temperatures, melting points of the fuel materials, temporal heat generation, temperature distribution in the nuclear fuel rod and temporal variation of the neutronic data during rejuvenation periods.…”
Section: Introductionmentioning
confidence: 99%
“…We have taken physical parameters and dependencies of the densities and the specific heat capacities on temperature for the fuel, the gap and the cladding from the papers [1,6,7] . Heat conductivities for the fuel and for the rim layer could be expressed by a classical phonon transport model [24][25][26][27]…”
Section: Introductionmentioning
confidence: 99%
“…The heat-transfer coefficient H is found according to the relation [16] H = 0.023Re 0.8 Pr 0.4 k/D h , where Re = GD h /μ is the Reynolds number, Pr = μC p /k is the Prandtl number, D h is the hydraulic diameter, k is the thermal conductivity of water, C p is the specific heat of water at constant pressure, μ is the dynamic viscosity of water, and G is the flow density of the cooling liquid. The reference data in [17] were used to determine the coefficient of heat-transfer H = 2936.8 J/(sec·m 2 ·K) at water pressure P = 15.7 MPa and temperature T = 488 K.…”
mentioning
confidence: 99%