2015
DOI: 10.1016/j.jconrel.2015.07.031
|View full text |Cite
|
Sign up to set email alerts
|

Silk as a potential candidate for bone tissue engineering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
66
0
4

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 135 publications
(75 citation statements)
references
References 203 publications
(177 reference statements)
0
66
0
4
Order By: Relevance
“…[11] Among many polymer materials, silk fibroin (SF), a natural protein fiber, showed significant potential for BTE because of its impressive biocompatibility, strong mechanical properties, minimal/nonimmunogenicity, and tunable biodegradability. [12][13][14] SF is also an FDA approved material for some biomedical devices (e.g., sutures) indicating its safety to a human body. [15,16] Many forms of SF biomaterials including films, electrospun nanofibers, sponges, and hydrogels have been developed and explored as scaffolds for bone regeneration.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…[11] Among many polymer materials, silk fibroin (SF), a natural protein fiber, showed significant potential for BTE because of its impressive biocompatibility, strong mechanical properties, minimal/nonimmunogenicity, and tunable biodegradability. [12][13][14] SF is also an FDA approved material for some biomedical devices (e.g., sutures) indicating its safety to a human body. [15,16] Many forms of SF biomaterials including films, electrospun nanofibers, sponges, and hydrogels have been developed and explored as scaffolds for bone regeneration.…”
Section: Introductionmentioning
confidence: 99%
“…[9,10] Designing a material that can be injected in the gel form and reformed to fit a desired geometry of bone defect while possessing similar mechanical properties before and after injection can potentially address this issue. [12][13][14] SF is also an FDA approved material for some biomedical devices (e.g., sutures) indicating its safety to a human body. [11] Among many polymer materials, silk fibroin (SF), a natural protein fiber, showed significant potential for BTE because of its impressive biocompatibility, strong mechanical properties, minimal/nonimmunogenicity, and tunable biodegradability.…”
mentioning
confidence: 99%
“…In recent years, biomaterials derived from vegetable proteins have attracted enormous attention as a critical component in functional polymer blends, with intended applications for commodity products, electronics, biomedical, and bio‐engineering applications, etc. Soy protein, as one of the low cost and abundant natural resources, have been widely studied.…”
Section: Introductionmentioning
confidence: 99%
“…Durante o processo de purificação dos casulos, a sericina é removida devido à possibilidade de gerar respostas imunes ao corpo humano, embora alguns pesquisadores reportem que a sericina auxilia na proliferação celular e na melhoria de feridas causadas por queimaduras. Uma vez que a sericina é removida, a fibroína de seda dissolvida pode ser processada em diferentes estruturas, como mostrado na Figura 5B(ROCKWOOD et al, 2011;MOTTAGHITALAB et al, 2015).Figura 5 -(A) Seda: Origem e composição (B) Diferentes estruturas possíveis para fibroína de seda Fonte: adaptado de Koh et al (2015) e Rockwood et al (2011)A fibroína de seda (FS) é um copolímero composto por duas cadeias, uma de baixa massa molecular (~26 kDa), e a outra de alta massa molecular (~390 kDa), ligadas por ligações de dissulfeto na terminação -C das cadeias de alta massa molecular. A cadeia de alta massa molecular, hidrofóbica, é uma sequência repetitiva de glicina (GLY)-alanina (ALA)serina (SER), formada por folhas cristalinas (folhas-ß) que conferem a resistência mecânica (Figura 6).…”
unclassified
“…A sequência das cadeias de baixa massa molecular não é repetitiva, é hidrofílica e apresenta baixa cristalinidade. Na Figura 6 encontra-se o esquema da sequência de amino ácidos presentes na cadeia de alta massa molecular (ROCKWOOD et al, 2011;MANDAL et al, 2012;MOTTAGHITALAB et al, 2015). Figura 6 -Sequência de amino ácidos da cadeia de alta massa molecular da FS As três estruturas cristalinas presentes na fibroína de seda são do tipo I, II e III.…”
unclassified