2016
DOI: 10.1007/978-3-319-47403-8_1
|View full text |Cite
|
Sign up to set email alerts
|

SiGe Based Re-engineering of Electronic Warfare Subsystems

Abstract: of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…Systems with Schottky emitters and detectors are regarded as all-electronic systems. On the other hand, photonics systems (systems based on lasers [63]) have their advantages, but still typically require passive receivers, as was the case at the very beginning of THz imaging. Typically, laser imagers can deploy the pulsed wave or continuous wave approach [88]; the pulse-wave approach has been used for many more years and is the much more widely adopted one of the two.…”
Section: Traditional and Current Approaches To Terahertz Radar Andmentioning
confidence: 99%
“…Systems with Schottky emitters and detectors are regarded as all-electronic systems. On the other hand, photonics systems (systems based on lasers [63]) have their advantages, but still typically require passive receivers, as was the case at the very beginning of THz imaging. Typically, laser imagers can deploy the pulsed wave or continuous wave approach [88]; the pulse-wave approach has been used for many more years and is the much more widely adopted one of the two.…”
Section: Traditional and Current Approaches To Terahertz Radar Andmentioning
confidence: 99%