2020
DOI: 10.1109/access.2020.2972577
|View full text |Cite
|
Sign up to set email alerts
|

Sharp Threshold for the Dynamics of a SIRS Epidemic Model With General Awareness- Induced Incidence and Four Independent Brownian Motions

Abstract: In this paper, a stochastic SIRS epidemic model with general awareness-induced and four independent Brownian Motions is established. We verify the global existence of a unique positive solution and find out the noise modified reproduction number R S 0 which is a sharp threshold for the dynamics: If R S 0 < 1, the disease will die out; if R S 0 > 1, the disease persists and there exists a global asymptotically stable stationary distribution under parameter restrictive conditions. Numerical simulations are prese… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 23 publications
0
4
0
Order By: Relevance
“…A traditional compartmental model to predict the infectious disease is the SIR (Susceptible-Infected-Removed) model. This SIR model can be expressed by the following non-linear differential equations [64]:…”
Section: B Identifying Tracking and Predicting The Outbreakmentioning
confidence: 99%
See 1 more Smart Citation
“…A traditional compartmental model to predict the infectious disease is the SIR (Susceptible-Infected-Removed) model. This SIR model can be expressed by the following non-linear differential equations [64]:…”
Section: B Identifying Tracking and Predicting The Outbreakmentioning
confidence: 99%
“…A traditional compartmental model to predict the infectious disease is the SIR (Susceptible-Infected-Removed) model. This SIR model can be expressed by the following non-linear differential equations [64] : \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{equation*} dS / dt = -\beta S I, \;\; dI / dt = \beta S I - \gamma I, \;\; dR / dt = -\gamma I,\end{equation*} \end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$S $ \end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$I $ \end{document} , and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$R $ \end{document} denote susceptible, infected, and removed individuals, respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta $ \end{document} is the transmission rate, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\gamma $ \end{document} is the recovering rate. However, this model is not suitable for the COVID-19 pandemic because of its assumptions, which are 1) the recovered cases will not get infected again and 2) the model simply ignores the time-varying nature of two parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta $ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\gamma $ \end{document} .…”
Section: Applications Of Ai For Fighting Covid-19mentioning
confidence: 99%
“…SIR (Susceptible-Infected-Removed) is a traditional established model to predict infectious diseases (49). However, this model has some shortcomings including the assumption that recovered patients will not become infected again, ignoring social distancing and quarantine policies and the time-varying nature of some parameters.…”
Section: Contact Tracking and Virus Spread Controlmentioning
confidence: 99%
“…e total numbers of computers on the client and server parts are N W and N S , respectively [7]. (H2) Computers on the client part can be classified into three classes: normal clients (W nodes), infected clients (I nodes), and recovered clients (R nodes) [19,20]. Let W(t), I(t), and R(t) represent the proportion of the W, I, and R nodes, respectively, in the total number of computers on the client part at time t. e total number is constantly equal to N W :…”
Section: Differential Dynamic Modelmentioning
confidence: 99%