Electrodialysis (ED) technology for waste acid treatment has high economic efficiency and environmentally friendly advantages. The primary limitation of ED in the retrieval of low-concentration spent acids lies in the leakage of hydrogen ions through anion exchange membranes (AEMs) due to its extremely small size and high mobility. To address this issue, a series of AEMs named QPAB-x (x = 3, 5, 7, 10) were designed for acid concentration in ED process by increasing the membrane densities through in situ crosslinking in this study. The successful synthesis of polymers was confirmed through 1 H nuclear magnetic resonance hydrogen ( 1 H NMR) spectroscopy and Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, ATR-FTIR spectroscopy showed that the higher the side chain content, the higher the crosslinking degree of the membranes. X-ray photoelectron spectroscopy (XPS) was employed to characterize the effects of aqueous and acidic environments on QPAB membranes. The performance disparities between QPAB-x membranes in acidic and aqueous environments were examined separately. Subsequently, the influence of crosslinking degree on the acid-blocking capability of the membranes was thoroughly investigated by conducting ED acid-concentration experiments to monitor the hydrogen ions concentration process and determine the current efficiency and energy consumption of the QPAB-x membranes. Our experimental results demonstrated that QPAB-x membranes with higher cross-linking degrees have lower water content, especially the QPAB-10 membrane with an IEC of approximately 1.5 mmol g −1 and a remarkably low water content of around 10%. This leads to a reduced H + transfer number and excellent acid-blocking properties. Additionally, compared to commercial membrane A2, using the QPAB-10 membrane in the ED process resulted in a higher final H + concentration in the concentrated chamber. Consequently, these synthesized membranes exhibit considerable promise in the field of ED acid recovery.