ABSTRACT:A recently published methodology based on the semiclassical path integral theory was applied in a double well structure and gave the analytic form of the system's Green's function. This type of potential can describe the ammonia molecule as far as the motion of the nitrogen atom perpendicular to the hydrogen plane is discussed. Because of the fact that a double well describes a bound system and correspondingly stationary states (constructed by the symmetric and antisymmetric superposition of the eigenstates of the two unperturbed wells), it was expected that the energy spectrum would be real, in a form of doublets due to the splitting effect that takes place. However, the result was a pair of complex poles, which had a clearly positive imaginary part for each member. The present work explains the role of the imaginary parts of the complex poles as the decay rate of quantities defined as the energy indeterminacies, which are directly related to the fact that energy is not well determined in a classically forbidden region of motion. These quantities come as a function of (d)/dE, which is the derivative of the classical action inside the potential barrier, with respect to energy. The major contribution comes from the turning points, and then the imaginary parts are responsible, not only for the conservation of energy, but for the correct sign of time as well. In this way, a different approach for the tunneling process is adopted, in which the entry or exit of the particle from the potential barrier takes place inside a neighborhood of the turning point, as though the latter was broadened and fluctuating. The magnitude of the previously mentioned decay rate is equal to /, where is the frequency of the classical oscillations inside one well. In contrast, the inversion frequency is generated by the part of the complex pole that is unrelated to (d)/dE and is much smaller in magnitude than the classical frequency, since it is given as / exp(Ϫ). In this way, the period of the energy fluctuations is much smaller than the internal period of the system produced by the oscillating communication of the two classically allowed regions of motion.