2020
DOI: 10.1021/acs.jctc.0c00079
|View full text |Cite
|
Sign up to set email alerts
|

Semiclassical Approach to Photophysics Beyond Kasha’s Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene

Abstract: Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand photophysics and spectroscopy of azulene and other non-conventional molecules, we develop a systematic, general, and efficient computational approach combining semiclassical dynamics of nuclei with ab initio electronic structure. First, to analyze the nonadiabatic eff… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
35
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1
1

Relationship

2
5

Authors

Journals

citations
Cited by 39 publications
(39 citation statements)
references
References 99 publications
0
35
0
2
Order By: Relevance
“…The vibronic features of the experimental S 2 absorption and emission spectra are only recovered after the inclusion of HT effects (Figure 3c). The relevance of HT effects on the S 2 emission of azulene have also been proved by Prlj et al 77 In Ref. 77 they combined a semiclassical approach with ab initio calculations to account for the anomalous emission in azulene.…”
Section: Uv-vis Absorption and Emission Spectramentioning
confidence: 88%
“…The vibronic features of the experimental S 2 absorption and emission spectra are only recovered after the inclusion of HT effects (Figure 3c). The relevance of HT effects on the S 2 emission of azulene have also been proved by Prlj et al 77 In Ref. 77 they combined a semiclassical approach with ab initio calculations to account for the anomalous emission in azulene.…”
Section: Uv-vis Absorption and Emission Spectramentioning
confidence: 88%
“…[71,73] Thel arge DE(S 2 ÀS 1 )v alue should effectively slow down IC in as imple FGR framework;i nf act, am ore thorough treatment with CI reaches the same conclusions. [15,73] Further examples of compounds showing steady-state non-Kasha emission in solution are cyclo [3.3.3]azines [74] as well as triphenylmethane-(TPM-), [75] porphine-, [76] thioketone-, [67] tricarbocyanine (TCC)-, [77] and phenanthroimidazole-type [78] dyes, which show very large f 2 values and also large DE(S 2 ÀS 1 )v alues on the order of 1eV, thus emphasizing the crucial role of alarge energy spacing DE(S 2 ÀS 1 )for the observation of non-Kasha behavior. For new compounds,t his should be crosschecked with quantum-chemical calculations, [79] and by analyzing the PLE spectrum (see Section 2).…”
Section: Non-kasha Emissionmentioning
confidence: 99%
“…[69] Dieses Verhalten wird durch die besondere elektronische Struktur des Azulens (und seiner Derivate) bedingt, [72] die eine große Energielücke DE(S 2 ÀS 1 ) % 1.7 eV und gleichzeitig eine große Oszillatorstärke f 2 des S 2 !S 0 -Übergangs im Vergleich mit f 1 fürS 1 !S 0 erzeugt. [71,73] Die große S 2 ÀS 1 -Energielücke bedingt bereits im einfachen FGR-Modell eine Verlangsamung der IC;auch die genauere CI-Behandlung kommt zur selben Schlussfolgerung. [15,73] Weitere Beispiele fürS teady-State-non-Kasha-Emission in Lçsung sind Cyclo [3.3.3]azin-, [74] Tr iphenylmethan (TPM)-, [75] Porphin-, [76] Thioketon-, [67] Tr icarbocyanin (TCC)- [77] und Phenanthroimidazol-basierte [78] Farbstoffe,d ie ausreichend große f 2 -Oszillatorstärken und gleichzeitig große DE(S 2 ÀS 1 )-Separation in der Grçßenordnung von 1eVaufweisen;d ies unterstreicht wiederum die zentrale Role einer großen S 2 ÀS 1 -Energielücke fürd as Auftreten des Non-Kasha-Verhaltens.…”
Section: Non-kasha-emissionunclassified
“…[71,73] Die große S 2 ÀS 1 -Energielücke bedingt bereits im einfachen FGR-Modell eine Verlangsamung der IC;auch die genauere CI-Behandlung kommt zur selben Schlussfolgerung. [15,73] Weitere Beispiele fürS teady-State-non-Kasha-Emission in Lçsung sind Cyclo [3.3.3]azin-, [74] Tr iphenylmethan (TPM)-, [75] Porphin-, [76] Thioketon-, [67] Tr icarbocyanin (TCC)- [77] und Phenanthroimidazol-basierte [78] Farbstoffe,d ie ausreichend große f 2 -Oszillatorstärken und gleichzeitig große DE(S 2 ÀS 1 )-Separation in der Grçßenordnung von 1eVaufweisen;d ies unterstreicht wiederum die zentrale Role einer großen S 2 ÀS 1 -Energielücke fürd as Auftreten des Non-Kasha-Verhaltens. Fürn eue Verbindungen sollte dies mithilfe quantenchemischer Berechnungen [79] sowie durch eine Analyse des PLE-Abbildung 3.…”
Section: Non-kasha-emissionunclassified