We have prepared a novel assembly with copper nanoclusters (CuNCs) and imidazolium-based gemini surfactants (different chain lengths). These novel mimic enzymes formed through the assembly of nanoclustergemini surfactants have been utilized in creating colorimetric sensors to detect biomolecules. Yet, understanding the method for detecting glutathione (GSH) and its sensing mechanism using this specific assembly-based colorimetric sensor poses a significant challenge. Because of the role of surface ligands, the complexes of cysteine-capped CuNCs (Cys-CuNCs) and gemini surfactants exhibit strong amphiphilicity, enabling them to self-assemble like a molecular amphiphile. We have investigated the kinetics and catalytic capabilities of this Cys-CuNCs@gemini surfactant assembly through peroxidase-like activity. Additionally, a sensitive and simple-to-use colorimetric sensing approach for glutathione (GSH) is also disclosed here, demonstrating a low limit of detection, by using this peroxidase-like activity of Cys-CuNCs@gemini surfactant assemblies. Thus, the remarkable advantages of the Cys-CuNCs@gemini surfactant nanozyme make it suitable for the precise colorimetric detection of GSH, demonstrating excellent sensitivity and reliable selectivity. Additionally, it performs well in detecting GSH in various soft drinks.