2015
DOI: 10.1002/2015wr016934
|View full text |Cite
|
Sign up to set email alerts
|

Self‐adjustment of stream bed roughness and flow velocity in a steep mountain channel

Abstract: Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1 km study reach by roughly 1 order of magnitude (S 5 3-41%), with a corresponding increase in streambed roughness, while flow disch… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

7
69
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 50 publications
(80 citation statements)
references
References 72 publications
7
69
0
1
Order By: Relevance
“…Several friction laws relating the velocity to flow depths, slope, and roughness ( D 84 or σ Ks ) were tested on the reference points. The Ferguson () friction law proved to be the most relevant for such very shallow flows with substantial roughness, consistently with several other studies (e.g., Rickenmann & Recking, ; Schneider et al, ): VgdS=2.5false(dfalse/D84false)1+0.15false(dfalse/D84false)5false/3 with d the water depth (m) and g gravitational acceleration (m/s 2 ). To extend the friction law for all areas of flow, a modified Ferguson () friction law was used by introducing equation into equation : VX,YgdX,YSX,Y=2.5false(dX,Yfalse/7σKs,X,Yfalse)1+0.15false(dX,Yfalse/7σKs,X,Yfalse)5false/3 …”
Section: Methodssupporting
confidence: 87%
See 1 more Smart Citation
“…Several friction laws relating the velocity to flow depths, slope, and roughness ( D 84 or σ Ks ) were tested on the reference points. The Ferguson () friction law proved to be the most relevant for such very shallow flows with substantial roughness, consistently with several other studies (e.g., Rickenmann & Recking, ; Schneider et al, ): VgdS=2.5false(dfalse/D84false)1+0.15false(dfalse/D84false)5false/3 with d the water depth (m) and g gravitational acceleration (m/s 2 ). To extend the friction law for all areas of flow, a modified Ferguson () friction law was used by introducing equation into equation : VX,YgdX,YSX,Y=2.5false(dX,Yfalse/7σKs,X,Yfalse)1+0.15false(dX,Yfalse/7σKs,X,Yfalse)5false/3 …”
Section: Methodssupporting
confidence: 87%
“…Several direct field measurement campaigns implemented in mountain rivers during mean flows seldom reported highly supercritical Froude numbers (e.g., Comiti et al, , ; Lenzi, ; Magirl et al, ; Nitsche et al, ; Recking et al, ; Schneider et al, ; Tinkler, ; Zimmermann & Church, ). Interestingly, most peak‐flow reconstructions after moderate‐ to extreme‐magnitude flood events were also subcritical or near critical (Hauer & Habersack, ; Lumbroso & Gaume, ; Rickenmann & Koschni, ; Ruiz‐Villanueva et al, ).…”
Section: Introductionmentioning
confidence: 99%
“…Eine wesentliche Erkenntnis dieser Arbeiten war der erhebliche Unterschied zwischen der Kornverteilung des über einen gewissen Zeitraum transportierten Geschiebes und jener der Bachsohle. Die Kornverteilung der Bachsohle von Hochgebirgsbächen ist in der Regel sehr grob und das Mittelkorn wie auch andere charakteristische Korngrößen stehen häufig in einem positiven Zusammenhang mit dem lokalen Bachgefälle (Kammerlander 2017;Schneider et al 2015a). Die Grobkomponenten der Bachsohle stellen maßgebende Rauheitselemente dar und beeinflussen somit den Fließwiderstand im Gerinne.…”
Section: Kornverteilung Der Jahresgeschiebefracht In Hochgebirgsbächenunclassified
“…Among the variables included in the empirical analyses, mean flow depth and/or water surface slope (stream bed slope) are generally considered as the two most important. Some investigations have demonstrated that unit discharge or dimensionless unit discharge exerts an important influence on flow resistance (Rickenmann, 1991;Bjerklie et al, 2005a;Comiti et al, 2007;Ferguson, 2007;David et al, 2010;Rickenmann and Recking, 2011;D'Agostino and Michelini, 2015;Schneider et al, 2015). In fact, unit discharge or dimensionless unit discharge is physically equal to the product of mean flow depth and water surface slope in that it is the function of flow depth and water surface and usually preferable to the use of boundary shear stress for estimating incipient sediment motion in steep streams (Comiti et al, 2007).…”
Section: Introductionmentioning
confidence: 99%
“…Investigations on flow resistance have survived for more than a century (Manning, 1891;Keulegan, 1938;Vanoni, 1941Vanoni, , 1946Vanoni and Brooks, 1957;Qian et al, 1959;Peterson and Mohanty, 1960;Simons and Richardson, 1960;Vanoni and Nomicos, 1960;Simons et al, 1963;Qian and Zhou, 1965;Rouse, 1965;Golubtsov, 1969;Limerinos, 1970;Judd and Peterson, 1969;Bathurst, 1978Bathurst, , 1985Bathurst, , 2002Bray, 1979;Hey, 1979;Davis and Sutherland, 1980;Griffiths, 1981;Jarret, 1984;Aguirre-Pe and Fuentes, 1990;Bennett, 1995;Dingman and Sharma, 1997;Nikora et al, 1998;Lee and Ferguson, 2002;Ferro, 2003;Ferguson, 2007Ferguson, , 2010López et al, 2007;Recking et al, 2008;Reid and Hickin, 2008;Comiti et al, 2009;David et al, 2010;Robert, 2011;Ferreira et al, 2012;Nitsche et al, 2012;Schneider et al, 2015). Among these studies, the methods used for quantifying flow resistance can be generally categorized into two major groups: (i) a characteristic particle size approach (or a semiempirical approach) …”
Section: Introductionmentioning
confidence: 99%