2011
DOI: 10.1002/ange.201106018
|View full text |Cite
|
Sign up to set email alerts
|

Selektive Wirt‐Gast‐Bindung von Anionen ohne Hilfe von Wasserstoffbrücken: die Entropie als Designwerkzeug

Abstract: Entropie macht den Unterschied! Anders als im klassischen Wirt‐Gast‐Design, das in erster Linie enthalpische Wechselwirkungen nutzt, bindet der neue elektroneutrale Wirt 1 seine anionischen Gäste auf der Basis einer überragenden positiven Assoziationsentropie. Die wesentliche Ursache dafür liegt in der Desolvatisierung vornehmlich des Gastes, wobei die Einzigartigkeit der Komplexstruktur unangetastet bleibt. Obwohl Wasserstoffbrücken nicht beteiligt sind, qualifiziert sich der Wirt 1 als einer der besten ungel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2017
2017

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 49 publications
0
1
0
Order By: Relevance
“…[13] Thus, this example of selective sulfate crystallization as sulfate-water clusters represents ac omplex recognition phenomenon that extends far beyondt he simple lock-and-key principle commonly invoked in supramolecular chemistry. [14] It involves am ultitude of factors, includingt he mutualr ecognition of molecular and ionic components, af ine interplay of enthalpy and entropy, [15] and as eries of binding, self-assembly,a nd solvent exchange events that lead in the end to the nucleation and growth of highly insoluble crystals. Understanding and ultimately controlling all these factorst hrough systematic crystal engineering and structure-solubility relationship studies offer prospects for predictived esign of advanced separation systems for sulfate and other environmentally and energy relevant anions.…”
Section: Resultsmentioning
confidence: 99%
“…[13] Thus, this example of selective sulfate crystallization as sulfate-water clusters represents ac omplex recognition phenomenon that extends far beyondt he simple lock-and-key principle commonly invoked in supramolecular chemistry. [14] It involves am ultitude of factors, includingt he mutualr ecognition of molecular and ionic components, af ine interplay of enthalpy and entropy, [15] and as eries of binding, self-assembly,a nd solvent exchange events that lead in the end to the nucleation and growth of highly insoluble crystals. Understanding and ultimately controlling all these factorst hrough systematic crystal engineering and structure-solubility relationship studies offer prospects for predictived esign of advanced separation systems for sulfate and other environmentally and energy relevant anions.…”
Section: Resultsmentioning
confidence: 99%