1989
DOI: 10.1002/mana.19891430111
|View full text |Cite
|
Sign up to set email alerts
|

Selbstduale Goppa‐Codes

Abstract: Ii einer grundlegenden Arbeit [3] hat V. D. GOPPA mit Methoden aus der Theorie der algebraischen Kurven uber endlichen Korpern die nach ihm benannten Codes konstruiert. Diese Codes sind urn so besser, je mehr rationale Punkte die Kurve im Vergleich zu ihrem Geschlecht hat. &lit tiefliegenden Methoden der algebraischeri Geometrie sind unendliche Familien algebraischer Kurven mit ,,vielen" rationalen Punkten konstruiert worden [4], [12]. TSFALSMAN, VLADVT und ZINK haben ausgefiihrt, wie man dann Familien ,,guter… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

1993
1993
2001
2001

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…If moreover res P i (η) = 1 for all P i , then C(D, G) is self-dual.Proof See[11]. If there exists a divisor G such that 2G = D + K, where K is a canonical divisor, then D ≡ 2A for some divisor A, see[9] or[16, 3.1.3]. Theorem 5.5 Assume n > 2g + 2. a) The code C(D, G) is self-dual if and only if there exists a differential form η with simple poles and residue 1 at every P i such that 2G = D + K, where K = (η).…”
mentioning
confidence: 99%
“…If moreover res P i (η) = 1 for all P i , then C(D, G) is self-dual.Proof See[11]. If there exists a divisor G such that 2G = D + K, where K is a canonical divisor, then D ≡ 2A for some divisor A, see[9] or[16, 3.1.3]. Theorem 5.5 Assume n > 2g + 2. a) The code C(D, G) is self-dual if and only if there exists a differential form η with simple poles and residue 1 at every P i such that 2G = D + K, where K = (η).…”
mentioning
confidence: 99%