Using 2D seismic data and well logs from the Kribi-Campo subbasin in the south Cameroon margin, we have analyzed the postrift succession with the aim of deriving a chronostratigraphic chart and identifying stratigraphic traps. The Kribi-Campo subbasin related to the rifting between Africa and South America could be divided into a structurally complex eastern depocenter and a relatively less disturbed western depocenter in which a break-up unconformity approximately 107.5 Ma underlined the beginning of postrift history. We have used the modern concepts of sequence stratigraphy to identify and characterize seven second-order (SS1, SS2, SS3, SS4, SS5, SS6, and SS7) sequences and one third-order (SS8) sequences grouped into three megasequences (A, B, and C) from Albian to Recent. Sequence 1 (Albian-Cenomanian) was characterized by a retrogradation overlying a lowstand progradational pattern. The SS2 (Campanian-Maastrichtian) and SS3 (Maastrichtian) sequences were deposited during a highstand normal regression. From Paleocene to Eocene, the deposition of sequences SS4–SS5 was controlled by the development of submarine fan turbiditic system related to a forced regression of coastline. From the Middle Miocene to Recent age, the SS6, SS7, and SS8 sequences have been characterized by the development of sigmoidal-oblique clinoforms of a deltaic system well observed in the northern part of the study area. We have studied a new undocumented phase of forced regression of Mio-Pliocene in age within the postrift sequence SS7. The forced regression phases are associated with the Paleogene and Neogene uplift. Relative sea-level curves were constructed and compared with the existing published curves. The processes involved in the formation of these sequences were interpreted as a combination of tectonics, sediment supply, and sea-level changes. Potential reservoirs embedded within the sequences include channel fill, shingled turbidites, slope fan, and basin-floor fan complex.