Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Bearing degradation is the primary cause of electrical machine failures, making reliable condition monitoring essential to prevent breakdowns. This paper presents a novel hybrid model for the detection of multiple faults in bearings, combining Long Short-Term Memory (LSTM) networks with random forest (RF) classifiers, further enhanced by the Grey Wolf Optimization (GWO) algorithm. The proposed approach is structured in three stages: first, time and frequency domain features are manually extracted from vibration signals; second, these features are processed by a dual-layer LSTM network, which is specifically designed to capture complex temporal relationships within the data; finally, the GWO algorithm is employed to optimize feature selection from the LSTM outputs, feeding the most relevant features into the RF classifier for fault classification. The model was rigorously evaluated using a dataset comprising six distinct bearing health conditions: healthy, outer race fault, ball fault, inner race fault, compounded fault, and generalized degradation. The hybrid LSTM-RF-GWO model achieved a remarkable classification accuracy of 98.97%, significantly outperforming standalone models such as LSTM (93.56%) and RF (98.44%). Furthermore, the inclusion of GWO led to an additional accuracy improvement of 0.39% compared to the hybrid LSTM-RF model without optimization. Other performance metrics, including precision, kappa coefficient, false negative rate (FNR), and false positive rate (FPR), were also improved, with precision reaching 99.28% and the kappa coefficient achieving 99.13%. The FNR and FPR were reduced to 0.0071 and 0.0015, respectively, underscoring the model’s effectiveness in minimizing misclassifications. The experimental results demonstrate that the proposed hybrid LSTM-RF-GWO framework not only enhances fault detection accuracy but also provides a robust solution for distinguishing between closely related fault conditions, making it a valuable tool for predictive maintenance in industrial applications.
Bearing degradation is the primary cause of electrical machine failures, making reliable condition monitoring essential to prevent breakdowns. This paper presents a novel hybrid model for the detection of multiple faults in bearings, combining Long Short-Term Memory (LSTM) networks with random forest (RF) classifiers, further enhanced by the Grey Wolf Optimization (GWO) algorithm. The proposed approach is structured in three stages: first, time and frequency domain features are manually extracted from vibration signals; second, these features are processed by a dual-layer LSTM network, which is specifically designed to capture complex temporal relationships within the data; finally, the GWO algorithm is employed to optimize feature selection from the LSTM outputs, feeding the most relevant features into the RF classifier for fault classification. The model was rigorously evaluated using a dataset comprising six distinct bearing health conditions: healthy, outer race fault, ball fault, inner race fault, compounded fault, and generalized degradation. The hybrid LSTM-RF-GWO model achieved a remarkable classification accuracy of 98.97%, significantly outperforming standalone models such as LSTM (93.56%) and RF (98.44%). Furthermore, the inclusion of GWO led to an additional accuracy improvement of 0.39% compared to the hybrid LSTM-RF model without optimization. Other performance metrics, including precision, kappa coefficient, false negative rate (FNR), and false positive rate (FPR), were also improved, with precision reaching 99.28% and the kappa coefficient achieving 99.13%. The FNR and FPR were reduced to 0.0071 and 0.0015, respectively, underscoring the model’s effectiveness in minimizing misclassifications. The experimental results demonstrate that the proposed hybrid LSTM-RF-GWO framework not only enhances fault detection accuracy but also provides a robust solution for distinguishing between closely related fault conditions, making it a valuable tool for predictive maintenance in industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.