Numerous literature [1,4,5] has reported on the effective use of cellular automaton method for the simulation of short-range diffusion. Using this model for the simulation of short-range diffusional phase transformations therefore is a resolved issue. It is proven that two- or three-dimensional automata can reflect the course of the abovementioned processes realistically. What our study demonstrates more than in the past [1] is that two-dimensional stochastic cellular automaton simulation already presented before has been simplified. This time our automaton operates in one dimension [2], which has consequently reduced running time, thus, made it possible to enhance the efficiency of the scaling of simulation. In our previous work the results of scaling of one-dimensional simulation of the recrystallization process [3] were demonstrated, in our current study fitting is performed for measurement results of grain coarsening using one-dimensional cellular automaton.