2020
DOI: 10.1039/c9sc04503a
|View full text |Cite
|
Sign up to set email alerts
|

Scaffold-based molecular design with a graph generative model

Abstract: Searching new molecules in areas like drug discovery often starts from the core structures of candidate molecules to optimize the properties of interest. The way as such has called for a strategy of designing molecules retaining a particular scaffold as a substructure. On this account, our present work proposes a scaffold-based molecular generative model. The model generates molecular graphs by extending the graph of a scaffold through sequential additions of vertices and edges. In contrast to previous related… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
131
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
2
1

Relationship

1
9

Authors

Journals

citations
Cited by 141 publications
(141 citation statements)
references
References 37 publications
1
131
0
Order By: Relevance
“…The literature concerning generative models of molecules has exploded since the first work on the topic Gómez-Bombarelli et al [2018]. Current methods feature molecular representations such as SMILES [Janz et al, 2018, Segler et al, 2017, Skalic et al, 2019, Ertl et al, 2017, Lim et al, 2018, Kang and Cho, 2018, Sattarov et al, 2019, Gupta et al, 2018, Harel and Radinsky, 2018, Yoshikawa et al, 2018, Bjerrum and Sattarov, 2018, Mohammadi et al, 2019 and graphs [Simonovsky and Komodakis, 2018, Li et al, 2018a, De Cao and Kipf, 2018, Kusner et al, 2017, Dai et al, 2018, Samanta et al, 2019, Li et al, 2018b, Kajino, 2019, Jin et al, 2019, Bresson and Laurent, 2019, Lim et al, 2019, Pölsterl and Wachinger, 2019, Krenn et al, 2019, Maziarka et al, 2019, Madhawa et al, 2019, Shen, 2018, Korovina et al, 2019 In this section we conduct an empirical test of the hypothesis from [Gómez-Bombarelli et al, 2018] that the decoder's lack of efficiency is due to data point collection in "dead regions" of the latent space far from the data on which the VAE was trained. We use this information to construct a binary classification Bayesian Neural Network (BNN) to serve as a constraint function that outputs the probability of a latent point being valid, the details of which will be discussed in the section on labelling criteria.…”
Section: Related Workmentioning
confidence: 99%
“…The literature concerning generative models of molecules has exploded since the first work on the topic Gómez-Bombarelli et al [2018]. Current methods feature molecular representations such as SMILES [Janz et al, 2018, Segler et al, 2017, Skalic et al, 2019, Ertl et al, 2017, Lim et al, 2018, Kang and Cho, 2018, Sattarov et al, 2019, Gupta et al, 2018, Harel and Radinsky, 2018, Yoshikawa et al, 2018, Bjerrum and Sattarov, 2018, Mohammadi et al, 2019 and graphs [Simonovsky and Komodakis, 2018, Li et al, 2018a, De Cao and Kipf, 2018, Kusner et al, 2017, Dai et al, 2018, Samanta et al, 2019, Li et al, 2018b, Kajino, 2019, Jin et al, 2019, Bresson and Laurent, 2019, Lim et al, 2019, Pölsterl and Wachinger, 2019, Krenn et al, 2019, Maziarka et al, 2019, Madhawa et al, 2019, Shen, 2018, Korovina et al, 2019 In this section we conduct an empirical test of the hypothesis from [Gómez-Bombarelli et al, 2018] that the decoder's lack of efficiency is due to data point collection in "dead regions" of the latent space far from the data on which the VAE was trained. We use this information to construct a binary classification Bayesian Neural Network (BNN) to serve as a constraint function that outputs the probability of a latent point being valid, the details of which will be discussed in the section on labelling criteria.…”
Section: Related Workmentioning
confidence: 99%
“…Very recently, Simonovsky and Komodakis [119] propose the generation of molecular graphs by predicting their adjacency matrices, and Li et al [79] generated molecules node by node. Then more and more deep graph generative models for molecule generation are proposed in an attempt to ensure chemical validity and efficiency [24,57,82,107,114,144].…”
Section: Applications In Molecular Chemistrymentioning
confidence: 99%
“…Counting and generation of chemical compounds have a long history and numerous applications in designing novel drugs [ 3 , 4 , 5 , 6 , 7 , 8 ] and structure elucidation [ 9 ]. The problem of counting and generation of chemical compounds can be viewed as the problem of enumerating graphs with given constraints.…”
Section: Introductionmentioning
confidence: 99%