2023
DOI: 10.48550/arxiv.2303.00940
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Sampling over Union of Joins

Abstract: Data scientists often draw on multiple relational data sources for analysis. A standard assumption in learning and approximate query answering is that the data is a uniform and independent sample of the underlying distribution. To avoid the cost of join and union, given a set of joins, we study the problem of obtaining a random sample from the union of joins without performing the full join and union. We present a general framework for random sampling over the set union of chain, acyclic, and cyclic joins, wit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?