2014
DOI: 10.1098/rspa.2014.0191
|View full text |Cite
|
Sign up to set email alerts
|

Rolling friction and energy dissipation in a spinning disc

Abstract: This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
26
0
3

Year Published

2015
2015
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 28 publications
(29 citation statements)
references
References 24 publications
0
26
0
3
Order By: Relevance
“…Increasing the thickness of the disk changes the dynamics because of the existence of an unstable, invertedpendulum-like, static equilibrium [4,12,13]. Nevertheless, the center of mass of the disk with the global position vector r C always moves on a spiral trajectory [5,6] for low inclination angles, while the orbital angular momentum vector L = r G ×ṙ C per unit mass is almost aligned with the angular velocity ω of the disk and we have L · ω > 0. Here r G is the position vector of the center of mass with respect to the contact point of the body with the surface.…”
Section: Introductionmentioning
confidence: 80%
“…Increasing the thickness of the disk changes the dynamics because of the existence of an unstable, invertedpendulum-like, static equilibrium [4,12,13]. Nevertheless, the center of mass of the disk with the global position vector r C always moves on a spiral trajectory [5,6] for low inclination angles, while the orbital angular momentum vector L = r G ×ṙ C per unit mass is almost aligned with the angular velocity ω of the disk and we have L · ω > 0. Here r G is the position vector of the center of mass with respect to the contact point of the body with the surface.…”
Section: Introductionmentioning
confidence: 80%
“…The most thorough results of exploring the mechanisms of spinning disk energy dissipation, including experimental ones, are presented in Refs [10,23]. According to their authors, after a short stage of slip, the main factor affecting the dynamics of Euler's disk is the rolling friction, which is modelled in Refs [12,23] as a viscous contact with a quadratic dependence on the motion velocity. This is confirmed by the rather good agreement between the results of numerical simulations for the nutation angle and the precession speed, and the experimental results.…”
mentioning
confidence: 99%
“…Считая удар неупругим, определим компоненты ударного импульса I n и I t из условия мгновенной остановки новой точки контакта. Как следует из формулы (14), момент, пропорциональный w, создаётся не только нормальной, но и касательной составляющими ударного импульса: ∈( , ), где значение w 1 определяется равенством w 0 = 0 в формуле (9), а значение w 2 -формулой (11). Иными словами, колесо должно перекатиться через верхнюю точку и не потерять контакт с опорой.…”
Section: характер диссипации для различных моделей тренияunclassified
“…Природа сопротивления качению круглых тел (шара или цилиндра) существенно зависит от упругих свойств тела и поверхности. В частности, при движении автомобиля по шоссе это сопротивление главным образом обусловлено гистерезисом при деформации шин [9]. Для описания зависимости коэффициента трения от угловой скорости предлагается использовать эмпирическую формулу, идентичную (3).…”
Section: с л у ч а й н е п р е р ы в н о г о к о н т а к т аunclassified