Thermoanaerobacter kivui ist ein thermophiles acetogenes Bakterium, das chemolithoautotroph auf CO2 unter Verwendung von molekularem H2 als Elektronendonor wächst und Acetat als Produkt über den Wood-Ljungdahl-Weg (WLP) bildet. Im WLP werden 2 Mol CO2 reduziert, um ein Mol Acetyl-CoA zu bilden. Erste Studien wurden durchgeführt, um die Physiologie von T. kivui zu verstehen. T. kivui wächst autotroph auf H2 + CO2 und nach Adaptation auch auf CO oder Syngas. T. kivui wächst ebenfalls auch in Minimalmedium ohne weitere Zugabe von Vitaminen, was es zu einem Biokatalysator mit hohem Potenzial für die Produktion von Chemikalien mit hohem Mehrwert macht. Heterotroph wächst T. kivui auf Glucose, Fructose, Mannose, Pyruvat oder Formiat. Kürzlich wurde beschrieben, dass T. kivui in der Lage ist, auf dem Zuckeralkohol Mannitol in Gegenwart und Abwesenheit von HCO3- (oder externem CO2) zu wachsen. Allerdings war das Wachstum in Abwesenheit von externem CO2 deutlich verlangsamt. Daher wurde in dieser Studie getestet, ob eine Zugabe von externem Formiat das "fehlende" CO2 kompensieren kann. In Kombination mit Formiat wurde das Wachstum auf Mannitol in CO2 und HCO3- freien definierten Medien bis zu einer maximalen OD600 von 2,34 und mit einer Verdopplungszeit von 2,0 ± 0,0 stimuliert, was dem Wachstumsverhalten auf Mannitol in Anwesenheit von CO2/HCO3- entsprach. In Abwesenheit von Formiat (oder CO2) erreichte T. kivui nur eine endgültige optische Dichte von bis zu 0,7 mit einer verlängerten Verdoppelungszeit von 5,2 ± 0,2 Stunden. Dieses Experiment zeigte die höhe metabolische Flexibilität von T. kivui durch die Nutzung von Formiat als Elektronenakzeptor, wenn kein oder nur wenig CO2 vorhanden ist. Genomanalysen ergaben, dass T. kivui ein Trehalose- und Maltose-Transportsystem-Permeaseprotein (MalF) besitzt. Darüber hinaus verfügt T. kivui über Trehalose- und Maltosehydrolase-Gene, die als Kojibiose-Phosphorylase annotiert sind. Obwohl in der Originalveröffentlichung beschrieben wurde, dass der Organismus nicht auf Maltose oder Trehalose wachsen kann, konnte T. kivui im Laufe dieser Arbeit an das Wachstum auf Maltose und Trehalose adaptiert werden. Nach dem Transfer von einer Glukose-Vorkultur auf ein Medium mit 25 mM Maltose oder 25 mM Trehalose als alleinige C-Quelle wurde kein Wachstum erzielt. Bei Verwendung der gleichen Vorkultur in einem Medium mit höherer Konzentration (50 mM) Maltose oder Trehalose, begannen die Zellen zu wachsen. Bei Verwendung dieser adaptierten kulturen als Vorkultur wuchsen die Zellen in Gegenwart von in 25 mM Maltose oder Trehalose bis zu einer maximalen OD600 von 1,12 bzw. 0,73. Die Adaptation hing mit der Tatsache zusammen, dass der Organismus eine höhere Konzentration benötigt, um sich an diese Kohlenstoffquellen zu gewöhnen. Durch diese Daten wird das heterotrophe Potenzial von T. kivui erhöht. Um die Bedeutung der wasserstoffabhängigen Kohlendioxidreduktase (HDCR) während des Wachstums auf Formiat oder auf H2 + CO2 im Stoffwechsel von T. kivui zu verstehen, wurden Studien auf molekularer Ebene durchgeführt. Die HDCR nutzt H2 direkt für die Reduktion von CO2 zu Formiat im ersten Schritt des Wood-Ljungdahl-Wegs (WLP). Um die Rolle der HDCR in dieser Reaktion zu untersuchen, wurde das hdcr-Gencluster mit Hilfe des kürzlich entwickelten Mutagenesytems für T. kivui deletiert. In Wachstumstudien konnte anschliessend gezeigt werden, dass die ߡhdcr-Deletionsmutante nicht mehr auf Formiat oder H2 + CO2 als alleiniger Kohlenstoffquelle wachsen konnte. Nach Komplementation der Mutante mit dem hdcr-Gene in cis wuchsen die Kulture wieder auf Formiat oder H2 + CO2. Diese Experimente zeigten, dass die HDCR für das Wachstum auf H2 + CO2 oder Formiat essentiell ist. Interessanterweise konnte in der ߡhdcr-Mutante ebenfalls ein verändertes Wachstum auf Glukose als alleiniger C-Quelle festgestellt werden. Die T. kivui ߡhdcr-Mutante wuchs nur bis zu einer OD600 von 0,2, während der Wildtyp und der hdcr-komplementierte Stamm bis zu einer OD600 von 2,64 bzw. 2,4 wuchsen. Damit wurde bewiesen, dass die HDCR auch für die vollständige Glukoseoxidation in T. kivui erforderlich ist. Durch die Zugabe von Formiat wurde das Wachstum vollständig wiederhergestellt, ähnlich wie beim Wildtyp. Dies belegt wieder die Nutzung Formiat als terminalen Elektronenakzeptor. Auch auf Mannitol oder Pyruvat konnte die Mutanten nur in Gegenwart von Formiat wachsen. Der Substratverbrauch und die Produktbildung der T. kivui ߡhdcr-Mutante wurden in einem Zellsuspensionsexperiment untersucht. Die Zellen verbrauchten Formiat nur in Gegenwart von Glukose und produzierten Acetat mit einem Acetat/Substrat-Verhältnis von etwas mehr als 3,0, während die Acetatproduktion nur 12 mM betrug, wenn Glukose als alleiniges Substrat verwendet wurde. Diese Ergebnisse zeigen eine enge Kopplung der Oxidation von Multikohlenstoffsubstraten an den WLP. T. kivui ist eines der wenigen Acetogenen, die CO als einzige Kohlenstoff- und Energiequelle nutzen können. ...