Growth plate abnormalities, associated with impaired hypertrophic chondrocyte apoptosis, are observed in humans and animals with abnormalities of vitamin D action and renal phosphate reabsorption. Low circulating phosphate levels impair hypertrophic chondrocyte apoptosis, whereas treatment of these cells with phosphate activates the mitochondrial apoptotic pathway. Because phosphate-mediated apoptosis of chondrocytes is differentiation-dependent, studies were performed to identify factors that contribute to hypertrophic chondrocyte apoptosis. An increase in the percentage of cells with low mitochondrial membrane potential, evaluated by JC-1 fluorescence, was observed during hypertrophic differentiation of primary murine chondrocytes in culture. This percentage was further increased by treatment of hypertrophic, but not proliferative, chondrocytes with phosphate. Phosphate-mediated apoptosis was observed as early as 30 min post-treatment and was dependent upon Erk1/2 phosphorylation. Inhibition of Erk1/2 phosphorylation in vivo confirmed an important role for this signaling pathway in regulating hypertrophic chondrocyte apoptosis in growing mice. Murine embryonic metatarsals cultured under phosphate-restricted conditions demonstrated a 2.5-fold increase in parathyroid hormone-related protein mRNA expression accompanied by a marked attenuation in phospho-Erk immunoreactivity in hypertrophic chondrocytes. Thus, these investigations point to an important role for phosphate in regulating mitochondrial membrane potential in hypertrophic chondrocytes and growth plate maturation by the parathyroid hormone-related protein signaling pathway.Maturation of the growth of long bones is dependent upon the differentiation of proliferative chondrocytes into prehypertrophic and subsequently hypertrophic chondrocytes. Terminal differentiation of hypertrophic chondrocytes is characterized by the expression of signaling molecules that promote vascular invasion, apoptosis, and replacement of hypertrophic chondrocytes by osteoblasts that lay down the primary spongiosa of bone. Aberrant regulation of this developmental process results in growth plate disorders. Although calcium has been shown to play an important role in regulating chondrocyte maturation (1), apoptosis of terminally differentiated hypertrophic chondrocytes is dependent upon normal levels of circulating phosphate (2).Rickets is a growth plate anomaly observed in growing animals and humans with abnormalities of vitamin D action and renal phosphate reabsorption (3-6). In vivo investigations in genetically modified and dietary-manipulated mouse models demonstrate that hypophosphatemia is the underlying metabolic abnormality that impairs growth plate maturation in these disorders: low circulating phosphate levels result in impaired apoptosis of terminally differentiated hypertrophic chondrocytes in the growth plate, leading to rickets (2). The observation that inhibition of phosphate transport prevents phosphate-mediated apoptosis in hypertrophic chondrocytes (7-9) further ...