Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
26
0

Year Published

2014
2014
2015
2015

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 44 publications
references
References 47 publications
0
26
0
Order By: Relevance
“…This assumption will be a strong weapon to attenuate the parametric uncertainties in chaotic systems. And noting that the synchronization problem of unified chaotic system with or without parametric uncertainties has been addressed by many in the fields, see [3]- [5], [8]- [11], [26]. However, the above-mentioned works cannot be applied to unified chaotic system with stochastic perturbation, which means that our strategy is much more ambitious and practical than those in [3]- [5], [8]- [11], [26].…”
Section: Resultsmentioning
confidence: 93%
See 2 more Smart Citations
“…This assumption will be a strong weapon to attenuate the parametric uncertainties in chaotic systems. And noting that the synchronization problem of unified chaotic system with or without parametric uncertainties has been addressed by many in the fields, see [3]- [5], [8]- [11], [26]. However, the above-mentioned works cannot be applied to unified chaotic system with stochastic perturbation, which means that our strategy is much more ambitious and practical than those in [3]- [5], [8]- [11], [26].…”
Section: Resultsmentioning
confidence: 93%
“…Chaos synchronization has become a research focus due to its potential application to secure communication [26], power converters [23], information transmission [24], biological systems [25], and so on. The diverse synchronization phenomena include complete synchronization [11], phase synchronization [6], generalized synchronization [7], anti-synchronization [19], and lag synchronization [11]- [12], [17].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Many process applications in engineering, medicine and meteorology are described by chaotic non-linear differential equations whose solutions are too complicated to be controlled by classical methods. Several recent applications of the Rössler chaotic dynamical system deal with signal transmission (Eisencraft et al 2012), transmission security (Cheng 2012;Sheikhan, Shahnazi, and Garoucy 2013), digital communications (Pisarchik et al 2012), neual dynamics (Shi and Lu 2005), encrypt communications (Aguilar-Bustos et al 2010), and complex dynamical networks (Zhao, Aziz-Alaoui, and Bertelle 2012).…”
Section: Introductionmentioning
confidence: 99%
“…Synchronization in chaotic dynamics systems has obtained much attention particularly due to their potential application in secure communication, modelling brain activity, system identification and so on [1][2][3][4]. Now the notion of synchronization is extended far beyond complete synchronization, such as generalized synchronization [5], phase synchronization [6], anti-synchronization [7], projective synchronization [8], projective-anticipatory and projective-lag synchronization [9][10][11], and so on.…”
Section: Introductionmentioning
confidence: 99%