International Conference on Semantic Computing (ICSC 2007) 2007
DOI: 10.1109/icosc.2007.4338326
|View full text |Cite
|
Sign up to set email alerts
|

Robust Classification of Dialog Acts from the Transcription of Utterances

Abstract: This paper presents a robust classification of dialog acts from text utterances. Two different types, namely, bag-of-words and syntactic relationship among words, were used to extract the discourse level features from the transcript of utterances. Subsequently a number of feature mining methods have been used to identify the most relevant features and their roles in classifying dialog acts. The selected features are used to learn the underlying models of dialog acts using a number of existing machine learning … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2014
2014

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 1 publication
0
1
0
Order By: Relevance
“…In order to find the top features from the complete database following 12 Attribute Elevators are used: ChiSquared AttributeEval [12], CfsSubsetEval [13], ConsistencySubsetEval [14], FilteredAttributeEval [15], FilteredSubsetEval [16], GainRatioAttributeEval [17], InfoGainAttributeEval [18], OneRAttributeEval [19], PrincipalComponents [20], ReliefFAttributeEval [21], SVMAttributeEval [19], SymmetricalUncertAttributeEva [19], along with combination of certain search methods [21,22] like Genetic Search, Greedy Stepwise, Linear Forward Selection, Rank Search, Scatter Search, Subset Size Forward Selection and Ranker. The histogram of the feature counts from these attribute elevators is then plotted to get the ranking of the taxonomically relevant features that are most useful for the classification as shown in Figure 2.…”
Section: Feature Ranking and Selectionmentioning
confidence: 99%
“…In order to find the top features from the complete database following 12 Attribute Elevators are used: ChiSquared AttributeEval [12], CfsSubsetEval [13], ConsistencySubsetEval [14], FilteredAttributeEval [15], FilteredSubsetEval [16], GainRatioAttributeEval [17], InfoGainAttributeEval [18], OneRAttributeEval [19], PrincipalComponents [20], ReliefFAttributeEval [21], SVMAttributeEval [19], SymmetricalUncertAttributeEva [19], along with combination of certain search methods [21,22] like Genetic Search, Greedy Stepwise, Linear Forward Selection, Rank Search, Scatter Search, Subset Size Forward Selection and Ranker. The histogram of the feature counts from these attribute elevators is then plotted to get the ranking of the taxonomically relevant features that are most useful for the classification as shown in Figure 2.…”
Section: Feature Ranking and Selectionmentioning
confidence: 99%