2011
DOI: 10.1007/978-1-4614-0332-6_13
|View full text |Cite
|
Sign up to set email alerts
|

RNA Networks in Prokaryotes I: CRISPRs and Riboswitches

Abstract: As with eukaryotes, prokaryotes employ a variety of mechanisms to allow the various types of RNA to interact and perform complex functions as a network. This chapter will detail prokaryotic molecular systems, such as riboswitches and CRISPRs, to show how they perform unique functions within the cell. These systems can interact with each other to gain a higher level of control and here we highlight some examples of such interactions including the cleavage of certain riboswitches by RNaseP, and endoribonuclease … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2011
2011
2018
2018

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 62 publications
0
1
0
Order By: Relevance
“…Until very recently ncRNAs in prokaryotes (often called “small RNAs”) were not commonly thought of as being important in pathogenic studies. The characterization of the CRISPR system and small RNA pathways (e.g., Hfq-binding sRNAs) has made us more aware that an RNA-based backbone exists just as much in prokaryotes as in eukaryotes (for review see Biggs and Collins, 2011; Collins and Biggs, 2011). Eukaryotic pathogens (e.g., nematodes, yeast, and protists) have received a little more attention but lag behind our understanding of host (typically human and mice) ncRNAs (review by Batista and Marques, 2011).…”
Section: Introductionmentioning
confidence: 99%
“…Until very recently ncRNAs in prokaryotes (often called “small RNAs”) were not commonly thought of as being important in pathogenic studies. The characterization of the CRISPR system and small RNA pathways (e.g., Hfq-binding sRNAs) has made us more aware that an RNA-based backbone exists just as much in prokaryotes as in eukaryotes (for review see Biggs and Collins, 2011; Collins and Biggs, 2011). Eukaryotic pathogens (e.g., nematodes, yeast, and protists) have received a little more attention but lag behind our understanding of host (typically human and mice) ncRNAs (review by Batista and Marques, 2011).…”
Section: Introductionmentioning
confidence: 99%