We investigate the intersection between hierarchical and superpixel image segmentation. Two strategies are considered: (i) the classical region merging, that creates a dense hierarchy with a higher number of levels, and (ii) the recursive execution of some superpixel algorithm, which generates a sparse hierarchy with fewer levels. We show that, while dense methods can capture more intermediate or higher-level object information, sparse methods are considerably faster and usually with higher boundary adherence at finer levels. We first formalize the two strategies and present a sparse method, which is faster than its superpixel algorithm and with similar boundary adherence.We then propose a new dense method to be used as post-processing from the intermediate level, as obtained by our sparse method, upwards. This combination results in a unique strategy and the most effective hierarchical segmentation method among the compared state-of-the-art approaches, with efficiency comparable to the fastest superpixel algorithms.