It is well known that women live longer than men. This gap is observed in most human populations and can even reach 10–15 years. In addition, most of the known super centenarians (i.e., humans who lived for > 110 years) are women. The differences in life expectancy between men and women are often attributed to cultural differences in common thinking. However, sex hormones seem to influence differences in the prevalence of diseases, in the magnitude of aging, and in the longevity between men and women. Moreover, far from being human specific, the sex gap in longevity is extremely common in non-human animals, especially in mammals. Biological factors clearly contribute to such a sex gap in aging and longevity. Different hypotheses have been proposed to explain why males and females age and die differently. The cost of sexual selection and sexual dimorphism has long been considered the best explanation for the observed sex gap in aging/longevity. However, the way mitochondria are transmitted (i.e., through females in most species) could have an effect, called the mother’s curse. Recent data suggest that sex chromosomes may also contribute to the sex gap in aging/longevity through several potential mechanisms, including the unguarded X/Z, the toxic Y/W and the loss of Y/W. We discuss future research directions to test these ideas.