Evolution of Venomous Animals and Their Toxins 2016
DOI: 10.1007/978-94-007-6727-0_18-1
|View full text |Cite
|
Sign up to set email alerts
|

Revising the Role of Defense and Predation in Cone Snail Venom Evolution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 49 publications
0
2
0
Order By: Relevance
“…Given this, the differences in diet observed for these populations may drive divergence at toxin encoding genes through selection for effective capture of different prey types, although other explanations could be feasible. For instance, although cone snails utilize venoms to subdue and capture prey, venoms also serve a defensive role in some species [30,31]. Although we do not know if C. miliaris utilizes its venom defensively nor how predation pressures on this species differ among locations, it is possible that these or other factors are responsible for the patterns of variation that we observed.…”
Section: Discussionmentioning
confidence: 97%
See 1 more Smart Citation
“…Given this, the differences in diet observed for these populations may drive divergence at toxin encoding genes through selection for effective capture of different prey types, although other explanations could be feasible. For instance, although cone snails utilize venoms to subdue and capture prey, venoms also serve a defensive role in some species [30,31]. Although we do not know if C. miliaris utilizes its venom defensively nor how predation pressures on this species differ among locations, it is possible that these or other factors are responsible for the patterns of variation that we observed.…”
Section: Discussionmentioning
confidence: 97%
“…We specifically sought to determine how dietary differences are associated with structural and regulatory differentiation at toxin-related and non-toxin-related transcripts among populations. Although we assume that many of the transcripts encoding venom components are utilized in venoms for capturing prey, several recent studies have shown that some cone snail species utilize their venom to deter predation and that offensive venoms differ considerably from defensive ones [30,31]. Moreover, the three locations are likely to differ in biotic and abiotic characteristics that may present distinct challenges for the populations of C. miliaris at these sites.…”
Section: Introductionmentioning
confidence: 99%