Review of physics-informed machine-learning inversion of geophysical data
Gerard T. Schuster,
Yuqing Chen,
Shihang Feng
Abstract:We review five types of physics-informed machine learning (PIML) algorithms for inversion and modeling of geophysical data. Such algorithms use the combination of a data-driven machine learning (ML) method and the equations of physics to model and/or invert geophysical data. By incorporating the constraints of physics, PIML algorithms can effectively reduce the size of the solution space for machine learning models, enabling them to be trained on smaller datasets. This is especially advantageous in scenarios w… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.