Retinoic acid (RA), a bioactive retinoid, and polyriboinosinic:polyribocytidylic acid (PIC) are known to promote immunity in vitamin A-deficient animals. In this study, we hypothesized that RA, PIC, and the combination can provide significant immunoadjuvant activity even in the vitamin A-adequate state. Six-week-old C57BL/6 mice were immunized with tetanus toxoid (TT) and treated with RA and/or PIC at priming in three independent studies of short and long duration. RA and PIC differentially regulated both primary and secondary anti-TT IgG isotypes, whereas the combination of RA + PIC stimulated the highest level of anti-TT IgG production and, concomitantly, a ratio of IgG1 to IgG2a similar to that of the control group. The regulation of Ab response was strongly associated with type 1/type 2 cytokine gene expression. Whereas RA reduced type 1 cytokines (IFN-γ and IL-12), PIC enhanced both type 1 and type 2 cytokines (IL-4 and IL-12) and cytokine-related transcription factors. Despite the presence of PIC, the IL-4:IFN-γ ratio was significantly elevated by RA. In addition, RA and/or PIC modulated NK/NKT cell populations and the level of expression of the costimulatory molecules CD80/CD86, evident 3 days after priming. Notably, the NKT:NK and CD80:CD86 ratios were correlated with the IL-4:IFN-γ ratio, indicative of multiple converging modes of regulation. Overall, RA, PIC, and RA + PIC rapidly and differentially shaped the anti-tetanus Ig response. The robust, durable, and proportionate increase in all anti-TT IgG isotypes induced by RA + PIC suggests that this combination is promising as a means to enhance the Ab response to TT and similar vaccines.