2012
DOI: 10.1088/2041-8205/761/1/l3
|View full text |Cite
|
Sign up to set email alerts
|

Resolving Vega and the Inclination Controversy With Chara/Mirc

Abstract: Optical and infrared interferometers definitively established that the photometric standard Vega (= α Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner (MIRC6) on the Center for High Angular Resolution Astronomy (CHARA) Array. With our greater angu… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

6
116
0

Year Published

2013
2013
2021
2021

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 114 publications
(122 citation statements)
references
References 41 publications
6
116
0
Order By: Relevance
“…13 we extend this comparison by adding α Lyr (Vega; Monnier et al 2012) and Achernar (α Eri; present work). These two new stars provide a crucial test for the ELR model since they have, respectively, the lowest and highest flattening in the sample.…”
Section: Gravity Darkeningmentioning
confidence: 83%
“…13 we extend this comparison by adding α Lyr (Vega; Monnier et al 2012) and Achernar (α Eri; present work). These two new stars provide a crucial test for the ELR model since they have, respectively, the lowest and highest flattening in the sample.…”
Section: Gravity Darkeningmentioning
confidence: 83%
“…Mass Age (2003) 7.95±0.09 Nordgren et al (2001) 7.97±0.11 Nordgren et al (2001) 8.035±0.08 Mozurkewich et al (1991) 9.26±0.15 Shao et al (1988) 7.90±0.31 di Benedetto & Rabbia (1987) (2016) 3.722±0.071 Mozurkewich et al (2003) 3.34±0.07 Nordgren et al (2001) 3.68±0.05 Nordgren et al (2001) 148856 3.472±0.008 3.462±0.035 Mozurkewich et al (2003) 3.53±0.08 Nordgren et al (2001) 3.51±0.05 Nordgren et al (2001) 150997 2.493±0.018 2.624±0.034 Mozurkewich et al (2003) 2.50±0.08 Nordgren et al (2001) 2.64±0.04 Nordgren et al (2001) 2.42±0.07 Nordgren et al (1999) 156283 5.519±0.011 5.275±0.067 Mozurkewich et al (2003) 5.26±0.06 Nordgren et al (2001) 5.27±0.07 Nordgren et al (2001) 5.20±0.03 Nordgren et al (1999) (2016) 2.12±0.02 Ligi et al (2012) 2.041±0.043 Baines et al (2010) 172167 3.280±0.016 2.930±0.007 Monnier et al (2012) 3.08±0.03 * Mourard et al (2009) 3.202±0.005 * Absil et al (2006) 3.329±0.006 Aufdenberg et al (2006) 3.225±0.032 Mozurkewich et al (2003) 3.28±0.01 Ciardi et al (2001) Mozurkewich et al (2003) 3.11±0.04 Nordgren et al (2001) 3.20±0.05 Nordgren et al (2001) 3.08±0.03 Nordgren et al (1999) Note- * No LD diameter was provided, therefore we list the UD diameter here. Figure 4 shows a graphical representation of this table.…”
Section: Targetmentioning
confidence: 98%
“…Hou et al (2012) were the first group to implement this algorithm in astrophysics. The implementation presented here is an independent effort that has already proved effective in several projects (Sanders & Fabian 2013;Reis et al 2013;Weisz et al 2013;Cieza et al 2013;Akeret et al 2012;Huppenkothen et al 2012;Monnier et al 2012;Morton 2012;Crossfield et al 2012;Roškar et al 2012;Bovy et al 2012aBovy et al , 2012bBovy et al , 2012cBrown et al 2012;Brammer et al 2012;Bussmann et al 2012;Lang & Hogg 2012;Olofsson et al 2012;Dorman et al 2012). In what follows, we summarize the algorithm from GW10 and the implementation decisions made in emcee.…”
Section: Introductionmentioning
confidence: 99%