Wavelet Transform and Some of Its Real-World Applications 2015
DOI: 10.5772/61335
|View full text |Cite
|
Sign up to set email alerts
|

Resolutıon Enhancement Based Image Compression Technique using Singular Value Decomposition and Wavelet Transforms

Abstract: In this chapter, we propose a new lossy image compression technique that uses singular value decomposition (SVD) and wavelet difference reduction (WDR) technique followed by resolution enhancement using discrete wavelet transform (DWT) and stationary wavelet transform (SWT). The input image is decomposed into four different frequency subbands by using DWT. The low-frequency subband is the being compressed by using DWR and in parallel the high-frequency subbands are being compressed by using SVD which reduces t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 38 publications
0
1
0
Order By: Relevance
“…Conventional processing techniques and methods allow to filter signals in a frequency range, extract relevant characteristics such as maximum and minimum peaks, fill data by interpolation, and transform and decompose signals in other domains such as frequency and time. Among these processing techniques, wavelet has shown to have a broad application panorama; the literature documents wavelet uses in different and varied fields such as detection of anomalies associated with seismic events in ultralow-frequency geomagnetic signals [32]; it is also possible to use wavelet techniques for image compression, as detailed in [33], who decompose into singular values and use a discrete wavelet transform to improve the maximum ratio of signal-to-noise ratio compared to techniques such as JPEG2000.…”
Section: Wavelet In Biomedical Applicationsmentioning
confidence: 99%
“…Conventional processing techniques and methods allow to filter signals in a frequency range, extract relevant characteristics such as maximum and minimum peaks, fill data by interpolation, and transform and decompose signals in other domains such as frequency and time. Among these processing techniques, wavelet has shown to have a broad application panorama; the literature documents wavelet uses in different and varied fields such as detection of anomalies associated with seismic events in ultralow-frequency geomagnetic signals [32]; it is also possible to use wavelet techniques for image compression, as detailed in [33], who decompose into singular values and use a discrete wavelet transform to improve the maximum ratio of signal-to-noise ratio compared to techniques such as JPEG2000.…”
Section: Wavelet In Biomedical Applicationsmentioning
confidence: 99%