In this research, alpha imaging in Self Quenching Streamer (SQS) mode is investigated using a triple Thick Gas Electron Multiplier (THGEM) detector by Monte Carlo method and experimental data. First, a semi-empirical equation is derived to represent the relation between the SQS voltage and the alpha energy in every hole of the triple THGEM. The accuracy of this equation is tested and confirmed by a high degree of consistency. Secondly, the images of objects that are irradiated by Am-241 alpha source (5.49 MeV) are recorded by a CMOS camera using triple THGEM detector in the SQS mode. The resolution of images in this paper is a function of the exposure time. For an alpha source with 150 kBq activity, an optimal time interval for exposure is about 30 sec. For exposure time less or more than 30 sec, the images are incomplete and ambiguous, respectively. The overall objective of this work is to facilitate the alpha radiography in nuclear imaging through a triple THGEM without any amplifier or complicated electrical equipment.
K: Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Gaseous imaging and tracking detectors; Heavy-ion detectors; Micropattern gaseous detectors (MSGC, GEM, THGEM, RETHGEM, MHSP, MICROPIC, MICROMEGAS, InGrid, etc) 1Corresponding author.