2022
DOI: 10.1016/j.epsl.2021.117282
|View full text |Cite
|
Sign up to set email alerts
|

Replacement of magnetite by hematite in hydrothermal systems: A refined redox-independent model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
10
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(10 citation statements)
references
References 33 publications
0
10
0
Order By: Relevance
“…The transformation of magnetite to hematite can occur through solid‐state oxidation by molecular O 2 following Equation (1) (Davis et al., 1968; Dunlop & Ödemir, 1997). It can also proceed via non‐redox interface‐coupled dissolution‐reprecipitation reaction in hydrothermal systems following Equations (2) and (3) (e.g., Ohmoto, 2003; Otake et al., 2007; Yin et al., 2022; Zhao et al., 2019). 4normalFnormale3O4(normalmnormalanormalgnormalnnormalenormaltnormalinormaltnormale)+O2=6normalFnormale2O3(normalhnormalenormalmnormalanormaltnormalinormaltnormale) $4{\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4}(\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+{\mathrm{O}}_{2}=6{\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3}(\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})$ normalFnormale3O4(normalmnormalanormalgnormalnnormalenormaltnormalinormaltnormale)+2H+=normalFnormale2O3(normalhnormalenormalmnormalanormaltnormalinormaltnormale)+normalFnormale2++H2normalO(acidicconditions) ${\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4}(\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+2{\mathrm{H}}^{+}={\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3}(\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+{\mathrm{F}\mathrm{e}}^{2...…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…The transformation of magnetite to hematite can occur through solid‐state oxidation by molecular O 2 following Equation (1) (Davis et al., 1968; Dunlop & Ödemir, 1997). It can also proceed via non‐redox interface‐coupled dissolution‐reprecipitation reaction in hydrothermal systems following Equations (2) and (3) (e.g., Ohmoto, 2003; Otake et al., 2007; Yin et al., 2022; Zhao et al., 2019). 4normalFnormale3O4(normalmnormalanormalgnormalnnormalenormaltnormalinormaltnormale)+O2=6normalFnormale2O3(normalhnormalenormalmnormalanormaltnormalinormaltnormale) $4{\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4}(\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+{\mathrm{O}}_{2}=6{\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3}(\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})$ normalFnormale3O4(normalmnormalanormalgnormalnnormalenormaltnormalinormaltnormale)+2H+=normalFnormale2O3(normalhnormalenormalmnormalanormaltnormalinormaltnormale)+normalFnormale2++H2normalO(acidicconditions) ${\mathrm{F}\mathrm{e}}_{3}{\mathrm{O}}_{4}(\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+2{\mathrm{H}}^{+}={\mathrm{F}\mathrm{e}}_{2}{\mathrm{O}}_{3}(\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{e})+{\mathrm{F}\mathrm{e}}^{2...…”
Section: Discussionmentioning
confidence: 99%
“…dissolution-reprecipitation reaction in hydrothermal systems following Equations ( 2) and ( 3) (e.g., Ohmoto, 2003;Otake et al, 2007;Yin et al, 2022;Zhao et al, 2019).…”
Section: Magnetic Minerals and Their Formation In The E 1 D Lavasmentioning
confidence: 99%
“…As conventional TEM uses electromagnetic lenses to focus the electron beam, magnetic materials can permanently adhere to the lenses, irreparably damaging the system. Therefore, any sample containing magnetic material must be immobilized, for example, by using an oyster grid and FIB method. , In addition, terrestrial and extraterrestrial samples are complicated, so contamination during their preparation must be minimized and can be removed by plasma cleaning. The following four methods are commonly used to prepare TEM specimens from geological samples.…”
Section: Tem Specimen Preparationmentioning
confidence: 99%
“…Classical crystal growth models include layer-by-layer growth (i.e., Kossel–Stranski two-dimensional nucleation growth) and spiral growth mechanism . The application of TEM in recent decades has gradually increased research of nonclassical models of crystal growth such as crystallization of particle attachment (CPA) and amorphous transformation. Thus, CPA has been found to occurs in supergenic geological processes, high-temperature (e.g., melt) mineralization, and hydrothermal fluid mineralization of shallow crust, suggesting that nonclassical crystal models may occur extensively in various geological processes. Analyzing electron diffraction in TEM has become a mainstream tool for accurately characterizing mineral structures at the nanoscale in the above processes.…”
Section: Mineral Structure At the Nanoscalementioning
confidence: 99%
See 1 more Smart Citation