With climate change and urban development, water systems are changing faster than ever. Currently, the ecological status of water systems is still judged based on single point measurements, without taking into account the spatial and temporal variability of water quality and ecology. There is a need for better and more dynamic monitoring methods and technologies. Aquatic drones are becoming accessible and intuitive tools that may have an important role in water management. This paper describes the outcomes, field experiences and feedback gathered from the use of underwater drones equipped with sensors and video cameras in various pilot applications in The Netherlands, in collaboration with local water managers. It was observed that, in many situations, the use of underwater drones allows one to obtain information that would be costly and even impossible to obtain with other methods and provides a unique combination of three-dimensional data and underwater footage/images. From data collected with drones, it was possible to map different areas with contrasting vegetation, to establish connections between fauna/flora species and local water quality conditions, or to observe variations of water quality parameters with water depth. This study identifies opportunities for the application of this technology, discusses their limitations and obstacles, and proposes recommendation guidelines for new technical designs.Water 2020, 12, 1196 2 of 20 regulations (e.g., water framework directive) require extensive monitoring and the classification of water bodies based on environmental indicators, and set high standards to comply with [5,6]. Data accessibility and readiness for use is crucial to enable real-time water management [7]. There is a growing demand for innovative and efficient methods and approaches that can take advantage of the high potential of new technologies that are increasingly accessible to professionals from different areas [8].Currently, the monitoring of water quality is primarily conducted by collecting samples to be analyzed in laboratories, which are sometimes complemented with static continuous sensors for certain parameters. These methods are labor intensive, expensive, and only provide results after several days or weeks, and are therefore incapable of mapping rapid changes in the environment [9,10]. Static water quality sensors can provide valuable time series of the seasonal variation of parameters, but require frequent maintenance and have high costs and short lifetimes. For these reasons, only a few units are installed in specific locations of water bodies (e.g., near water supply inlets), resulting in high costs and inefficiency in monitoring large areas. Ecological research and the inspection of underwater objects and infrastructure are often performed by divers or from visual observations and manual collection of samples.There are several examples of successful environmental applications using different mobile platform setups [11].In maritime environments, underwater drones/ROVs (underwater re...