The regulation of c-myc protein, product of c-myc/genes, was studied in four glioma cell lines by Northern blot, pulse-chase dot blot, immunoblot and immunoprecipitation analyses. Northern blot analysis revealed no overexpression of c-myc transcript, and pulse-chase dot blot analysis showed normal turnover rate of c-myc transcript, suggestive of no evidence of aberrant regulation of c-myc at post-transcriptional level. The synthesis levels of c-myc protein were shown by immunoprecipitation and closely associated with the c-myc transcript levels demonstrated by Northern blot, suggestive of no evidence of aberrant translational control of c-myc, whereas they were dissociated from the accumulation levels of c-myc protein shown by immunoblot, suggestive of an evidence of aberrant regulation of c-myc at post-translational level. The mean (+/- standard deviation) half-lives of c-myc protein in four glioma cell lines were calculated from the pulse-chase immunoprecipitation analysis, and being 98 +/- 8 to 143 +/- 11 min, were about four- to sixfold longer than normal. In surgical specimens, the immunostain of c-myc protein was not found in normal astrocytes but localized heterogenously in nuclei of reactive astrocytes and glioma cells, and increased in stained cell number in proportion to malignancy. Although this study was limited to four glioma cell lines, it suggests that the c-myc protein in glioma cells may be accumulated due to its prolonged half-life contributing to an uncontrolled proliferation.