Colorectal cancer (CRC) stands as a major cause of cancer-related mortality globally, accounting for approximately 881,000 deaths each year. Traditional approaches such as chemotherapy and surgery have been the primary treatment modalities, yet the outcomes for patients with metastatic CRC are often unsatisfactory. Recent research has focused on targeting the pathways involved in oxidative stress, inflammation, and metastasis to enhance the survival of CRC patients. Within this context, sulforaphane (SFN), a notable phytochemical found predominantly in cruciferous vegetables, has been recognized as a potential anticancer agent. However, the specific mechanisms through which SFN may exert its chemopreventive effects in CRC remain unclear. This study explores the impact of SFN on IL-1β-induced IL-6 activation and MAPK and AP-1 signaling in HT-29 cells. Our findings reveal that SFN treatment not only diminishes IL-1β-stimulated IL-6 expression but also reduces oxidative stress by curtailing reactive oxygen species (ROS) production. Furthermore, it hinders the proliferation and invasiveness of HT-29 cells through the modulation of MAPK/AP-1 and STAT3 signaling pathways. These results indicate that SFN mitigates IL-1β-induced IL-6 expression in CRC cells by attenuating ROS production and disrupting MAPK/AP-1 signaling. This suggests that SFN holds significant potential as a chemotherapeutic agent for both treating and preventing CRC.