2020
DOI: 10.3389/fphy.2020.00036
|View full text |Cite
|
Sign up to set email alerts
|

Reinterpretation of Classic Proton Charge Form Factor Measurements

Abstract: In 1963, a proton radius of 0.805(11) fm was extracted from electron scattering data and this classic value has been used in the standard dipole parameterization of the form factor. In trying to reproduce this classic result, we discovered that there was a sign error in the original analysis and that the authors should have found a value of 0.851(19) fm. We additionally made use of modern computing power to find a robust function for extracting the radius using this 1963 data's spacing and uncertainty. This op… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 44 publications
(92 reference statements)
0
3
0
Order By: Relevance
“…Apparent discrepancies between the different extraction methods (the "proton radius puzzle") have engendered intense experimental and theoretical efforts, including dedicated new elastic scattering experiments at low Q 2 with electron and muon beams [11,12]. Most recent experiments and reanalyses have converged around r p E = 0.84 fm [11,[13][14][15][16][17][18][19][20][21][22][23][24], while some have obtained larger values [25][26][27][28]; the CODATA Task Group and the Particle Data Group have now adopted 0.84 fm as the recommended value [29,30]. The proton magnetic radius can only be extracted from elastic FF measurements (a method using atomic measurements was proposed in Ref.…”
Section: Introductionmentioning
confidence: 99%
“…Apparent discrepancies between the different extraction methods (the "proton radius puzzle") have engendered intense experimental and theoretical efforts, including dedicated new elastic scattering experiments at low Q 2 with electron and muon beams [11,12]. Most recent experiments and reanalyses have converged around r p E = 0.84 fm [11,[13][14][15][16][17][18][19][20][21][22][23][24], while some have obtained larger values [25][26][27][28]; the CODATA Task Group and the Particle Data Group have now adopted 0.84 fm as the recommended value [29,30]. The proton magnetic radius can only be extracted from elastic FF measurements (a method using atomic measurements was proposed in Ref.…”
Section: Introductionmentioning
confidence: 99%
“…This discrepancy triggered the "proton radius puzzle" [4,5]. The puzzle prompted new scattering experiments [6,7,8] and numerous reanalyses of existing electron scattering data [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23].…”
Section: Introductionmentioning
confidence: 99%
“…Apparent discrepancies between the different extraction methods (the "proton radius puzzle") have engendered intense experimental and theoretical efforts, including dedicated new elastic scattering experiments at low Q 2 with electron and muon beams [11,12]. Most recent experiments and reanalyses have converged around r p E = 0.84 fm [11,[13][14][15][16][17][18][19][20][21][22][23][24], while some have obtained larger values [25][26][27][28]; the CODATA Task Group and the Particle Data Group have now adopted 0.84 fm as the recommended value [29,30]. The proton magnetic radius can only be extracted from elastic FF measurements (a method using atomic measurements was proposed in Ref.…”
Section: Introductionmentioning
confidence: 99%