Chlorophyll accumulation and photosynthetic gene activation are two hallmarks of greening process in etiolated maize leaves in response to light signals. However, very little is known about the relevant signal transduction pathways mediating these essential processes that lead to photosynthetic competence. It is shown here that a potent and specific protein phosphatase 1 (PP1) and PP2A inhibitor, okadaic acid, efficiently blocks chlorophyll accumulation induced by light in etiolated maize leaves. In addition, the light‐inducible expression of two photosynthetic fusion genes can be specifically suppressed by the structurally unrelated PP1 and PP2A inhibitors, okadaic acid and calyculin A, using a sensitive and physiological maize protoplast transient assay. The specificity and effective concentration of the inhibitors in vivo and in vitro strongly suggest that PP1 is required for transmitting light signals. Intriguingly, several partial cDNAs encoding novel as well as conserved PP1 can be identified in maize leaves using the polymerase chain reaction. Studies of chimeric promoters indicate that PP1 activity is essential for the interaction of multiple regulatory elements. Although PP1 and PP2A have been implicated in the suppression of gene activity in yeast and animals, the present data indicate that PP1 appears to be essential for light‐dependent gene activation in plants.