2022
DOI: 10.48550/arxiv.2206.05341
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Reducing the Control Overhead of Intelligent Reconfigurable Surfaces Via a Tensor-Based Low-Rank Factorization Approach

Abstract: Passive intelligent reconfigurable surfaces (IRS) are becoming an attractive component of cellular networks due to their ability of shaping the propagation environment and thereby improving the coverage. While passive IRS nodes incorporate a great number of phase-shifting elements and a controller entity, the phase-shifts are typically determined by the cellular base station (BS) due to its computational capability. Since the fine granularity control of the large number of phase-shifters may become prohibitive… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?