2013
DOI: 10.1016/j.wasman.2013.05.008
|View full text |Cite
|
Sign up to set email alerts
|

Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
116
0
8

Year Published

2016
2016
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 332 publications
(126 citation statements)
references
References 16 publications
2
116
0
8
Order By: Relevance
“…6,8,11,12 Em contrapartida ao consumo crescente, grandes quantidades de resíduos de EEE vêm sendo produzidas devido à obsolescência (perceptiva e programada). Segundo a GSMA (Group Managed Service Accounts) da UNU (United Nations University), 13 aproximadamente 189 mil t de telefones celulares foram descartados em todo o mundo em 2014, dos quais cerca de 17 mil t na América Latina.…”
Section: 10unclassified
See 1 more Smart Citation
“…6,8,11,12 Em contrapartida ao consumo crescente, grandes quantidades de resíduos de EEE vêm sendo produzidas devido à obsolescência (perceptiva e programada). Segundo a GSMA (Group Managed Service Accounts) da UNU (United Nations University), 13 aproximadamente 189 mil t de telefones celulares foram descartados em todo o mundo em 2014, dos quais cerca de 17 mil t na América Latina.…”
Section: 10unclassified
“…[3][4][5][6] Suas características o colocam na dianteira do desenvolvimento de veículos híbridos e elétricos. [6][7][8] Essas baterias apresentam em sua composição um ânodo, um cátodo, coletores de corrente, um separador, um eletrólito, um invó-lucro externo e peças de vedação. O ânodo é composto de grafite, lítio, carbono e fluoreto de polivinilideno (PVDF), que fixa os demais componentes ao coletor de corrente, que é uma lâmina de cobre; o eletrólito é tipicamente hexafluorfosfato de lítio (LiPF 6 ) em solvente orgânico, normalmente carbonato de etileno (CE), carbonato de dietila (DEC), carbonato de dimetila (DMC) ou misturas deles.…”
Section: Introductionunclassified
“…c o m / l o c a t e / w a s m a n et al., 2008;Sun and Qiu, 2011) and the separation of Co and Li (Joulié et al, 2014;Provazi et al, 2011;Wang et al, 2009). Among these studies, leaching of Co and Li from LiCoO 2 powder using hydrometallurgical techniques had attracted wide attention, besides inorganic acids Jha et al, 2013), organic oxalate (Sun and Qiu, 2012), organic citric acid (Li et al, 2010a), succinic acid , oxalic acid (Zeng et al, 2015), tartaric acid and ascorbic acid (Nayaka et al, 2016) were used as leaching agents with satisfactory achievements. However, these acids could inevitably cause corrosion and liquor waste.…”
Section: Contents Lists Available At Sciencedirectmentioning
confidence: 99%
“…A mixture of chelating agent (NH 4 OH), NaOH solution, and aqueous solutions of transition metal salts was pumped into a continuously stirred tank reactor. The resultant precursor slurry was filtered and washed multiple times, and then dried in an oven at 80 Metals 2017, 7, 395 2 of 11 [14][15][16][17]. Most metal species are expected to dissolve with acidic leaching reagents.…”
Section: Synthesis Of Materialsmentioning
confidence: 99%
“…Above all, the hydrometallurgical process is the most well-established technology for recycling valuable metals from LIBs and has many benefits, such as the complete recovery of metals with high purity, low energy consumption, and low gas emission [11][12][13]. Metal species of spent LIBs are typically leached by HCl, HNO 3 , or H 2 SO 4 , with hydrogen peroxide used as a reducing agent in many cases [14][15][16][17]. Most metal species are expected to dissolve with acidic leaching reagents.…”
Section: Introductionmentioning
confidence: 99%