This paper proposes a class of closed-loop metamorphic linkages, which has different phases resulting from links annexing or locking of motors. Reconfigurable limbs are obtained by assembling these metamorphic linkages with kinematic chains. The potential metamorphic linkages are presented and the working phase transformation of the metamorphic linkages is analyzed. After adding suitable kinematic joints to the metamorphic linkage, the reconfigurable limbs whose constraint can be switched among different constraint forces and couples are synthesized. The serial limbs that can provide u ( u = 0, 1, 2) constraint forces and v ( v = 0, 1, 2) constraint couples are constructed by using screw theory method. The reconfigurable limbs which possess different configurations are combined with serial kinematic chains. By connecting the end moving platform to the fixed base with three identical kinematic limbs, a family of reconfigurable mechanisms with closed-loop metamorphic linkages is derived. These mechanisms have various output motion modes, such as 3R, 1T2R, 2T1R, and 3T.