2020
DOI: 10.1002/bio.3960
|View full text |Cite
|
Sign up to set email alerts
|

Recent developments in phosphate materials for their thermoluminescence dosimeter (TLD) applications

Abstract: The use of phosphate‐based thermoluminescence dosimeter (TLD) materials in current scenarios is presented here, particularly for the field of low dosimetry. TLD materials are currently researched for their use in for example environmental dosimetry, personal dosimetry, and medical dosimetry. There are several TLD materials available such as: sulphates, borates, fluorides, and sulphides, including some metal oxides and perovskites, which are the most used and have been widely explored. In the present scenario, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(10 citation statements)
references
References 81 publications
0
6
0
2
Order By: Relevance
“…Each of these combinations is responsible for its scheme of accumulation of energy absorbed due to ionizing radiation and its relaxation through the optical channel by thermostimulated luminescence (TSL). This ability is widely used in dosimetry [9][10][11][16][17][18][19].…”
Section: Methodsmentioning
confidence: 99%
“…Each of these combinations is responsible for its scheme of accumulation of energy absorbed due to ionizing radiation and its relaxation through the optical channel by thermostimulated luminescence (TSL). This ability is widely used in dosimetry [9][10][11][16][17][18][19].…”
Section: Methodsmentioning
confidence: 99%
“…RPL 是指当某些材料经受高能射线(如: X 射线、 γ 射线)或高能粒子(如:α 粒子)辐照后,再由紫外光 激发,能发射出一定波长可见光的现象。其本质上 是一种辐射诱导的发光现象,是材料与电离辐射相 互作用,在其内部产生一个或多个新的发光中心。 在发光中心处,位于基态的电子能够被多种形式的 能量激发,如光能、热能和电离辐射等 [7] 。根据不同 形式的激发能量导致的发光现象,可以分为 OSL、 TSL 和 RPL。在 RPL 中,吸收的辐射能量以电子空 穴的形式存储,价带上的电子被激发至导带,而后 被禁带中的电子陷阱捕获,形成新的发光中心,如 图 2(a)所示。当受到紫外光激发时,陷阱中的电子 会获得足够多的能量跃迁至更高的能级(或导带), 在激发过程后弛豫回到基态,最终和发光中心中的 空穴结合引起发光 [13] 。其发光特征(包含激发波长、 发射波长、发光寿命、量子效率等)主要取决于发光 中心的类型,因此发光中心在 RPL 中起到重要的作 用,这些由 RPL 引起的发光中心又被称为 RPL 中 心。由于 RPL 中心具备 PL 的特性,且 RPL 中心的 数量随着辐射剂量的增加而线性增加,因此可通过 监测 RPL 产生的 PL 强度,间接评估辐射剂量的多 少。由于产生的发光现象是 RPL 中心内的电子跃迁 导致, 电子在形成 PL 后会返回到原本的电子陷阱, 整个过程中发光中心并不会消失,也不会涉及电子 空穴对的消耗,且信号在重复读出的过程中是一致 的,不会因读出过程而丢失,所以 RPL 信号能够被 反复读数 [14] 。此外,RPL 还具有较大的辐射响应动 态范围、均匀稳定的辐射灵敏度和能量依赖性小等 特点,且大多数 RPL 材料也表现出良好的辐射剂量 线性响应 [7] 。因此,RPL 材料常被作为固态剂量计 进行辐射剂量的监测及定量化处理。同样类似的辐 射存储发光还包括 OSL 和 TSL。在 OSL 和 TSL 中, 电离辐射产生的电子电荷同样被禁带中的陷阱捕获 形成发光中心,当受到光或热刺激时会被释放,而 后在发光中心处重新组合发出可见光,如图 2(a)所 示。由于其 PL 强度和辐射剂量呈线性关系,所以也 常被用于剂量监测 [15][16] 。 OSL 和 TSL 剂量计具有灵 敏度高、能量响应好等特点 [17] ,但其 PL 强度在读 出过程中会随着时间的推移呈指数型减小,难以实 现重复读数 [7] 。 尽管这些发光机制之间存在差异,但它们仍具 有共同的物理过程,例如电子电荷的产生、捕获和 转移。为了更深入地研究这些机制,Okada 等 [18] 构 建了一款兼具 TSL/OSL/RPL 的自动化集成测量系 统,该系统提供了几种不同发光特性及其对应的 X 射线诱导闪烁光谱的自动化测试。…”
Section: Rpl 原理及特点unclassified
“…The spectrum revealed the 4f-4f electronic transitions of the Er 3+ and Yb 3+ ions. The transition of the Er 3+ ion included those originating from the ground state 4 I 15/2 to the excited states 4…”
Section: Optical Absorption Spectrummentioning
confidence: 99%
“…[ 3 ] TL is exhibited by materials such as minerals, phosphors, ceramics, and glass. [ 3,4 ] The TL materials used in thermoluminescent dosimeters (TLDs) are passive, which have the ability to store data about radiation dosage that can be read out when needed. TLD devices have the properties of high sensitivity, long‐term stability, flexibility of design, and reusability after annealing.…”
Section: Introductionmentioning
confidence: 99%