Polyphenism is the expression of multiple, discrete phenotypes from one genotype, and understanding the environmental factors that trigger development of alternative phenotypes is a critical step toward understanding the evolution of polyphenism and its developmental control. While much is known about the ecology of the well-known carnivore/omnivore polyphenism in spadefoot toad tadpoles, the environmental cues for the development of the specialized carnivore phenotype are not completely clear. We examined 27 different experimental treatments in two spadefoot toad species and used over 1,000 tadpoles in an attempt to elucidate those cues. While only 44 carnivores developed in these treatments, they were concentrated at cooler water temperatures and a diet that included fairy shrimp. However, while a diet of fairy shrimp promoted carnivore development, it was not necessary for inducing carnivore development at lower and intermediate water temperatures. Evidence also suggested a role for social inhibition that limited the proportion of interacting tadpoles that become carnivores. Tadpoles of Spea multiplicata grew larger at cooler temperatures and larger when their diets included fairy shrimp, whereas tadpoles of S. bombifrons grew larger at warmer temperatures and when their diets did not include fairy shrimp. These results indicate that carnivore induction can occur through different cues and that our current model for carnivore development is too limited. Finally, we argue that the carnivore/omnivore spadefoot system is neither a polyphenism nor a polymorphism but is a continuously distributed plasticity.